Previous |  Up |  Next

Article

Title: Some results on order weakly compact operators (English)
Author: Aqzzouz, Belmesnaoui
Author: Hmichane, Jawad
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 4
Year: 2009
Pages: 359-367
Summary lang: English
.
Category: math
.
Summary: We establish some properties of the class of order weakly compact operators on Banach lattices. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms. (English)
Keyword: order weakly compact operator
Keyword: order continuous norm
Keyword: discrete vector lattice
MSC: 46A40
MSC: 46B40
MSC: 46B42
idZBL: Zbl 1212.46038
idMR: MR2597231
DOI: 10.21136/MB.2009.140668
.
Date available: 2010-07-20T18:09:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140668
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Locally Solid Riesz Spaces.Academic Press (1978). Zbl 0402.46005, MR 0493242
Reference: [2] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices.Proc. Amer. Math. Soc. 83 (1981), 573-578. Zbl 0452.47038, MR 0627695, 10.1090/S0002-9939-1981-0627695-X
Reference: [3] Aliprantis, C. D., Burkinshaw, O.: Dunford-Pettis operators on Banach lattices.Trans. Amer. Math. Soc. 274 (1982), 227-238. Zbl 0498.47013, MR 0670929, 10.1090/S0002-9947-1982-0670929-1
Reference: [4] Dodds, P. G.: o-weakly compact mappings of Riesz spaces.Trans. Amer. Math. Soc. 214 (1975), 389-402. Zbl 0313.46011, MR 0385629
Reference: [5] Groenewegen, G., van Rooij, A.: The modulus of a weakly compact operator.Math. Z. 195 (1987), 473-480. Zbl 0611.47032, MR 0900341, 10.1007/BF01166700
Reference: [6] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093
Reference: [7] Schaefer, H. H.: Banach Lattices and Positive Operators.Springer, Berlin (1974). Zbl 0296.47023, MR 0423039
Reference: [8] Wickstead, A. W.: Extremal structure of cones of operators.Quart. J. Math. Oxford 32 (1981), 239-253. Zbl 0431.47024, MR 0615198, 10.1093/qmath/32.2.239
Reference: [9] Zaanen, A. C.: Riesz Spaces II.North Holland Publishing Company (1983). Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
MathBohem_134-2009-4_3.pdf 237.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo