Previous |  Up |  Next

Article

Keywords:
convex functions; Jensen inequality; Jensen-Steffensen inequality; real weights; reverse inequality
Summary:
A survey of mean inequalities with real weights is given.
References:
[1] Abramovich, S., Klaričić Bakula, M., Matić, M., Pečarić, J.: A variant of Jensen-Steffensen's inequality and quasi-arithmetic means. J. Math. Anal. Appl. 307 (2005), 370-386. DOI 10.1016/j.jmaa.2004.10.027 | MR 2138996 | Zbl 1066.26012
[2] Aczél, J.: Some general methods in the theory of functional equations in one variable. New applications of functional equations. Uspehi Mat. Nauk (N.S.) 11 (1956), 3-68. MR 0084095
[3] Alzer, Horst: Inequalities for pseudo arithmetic and geometric means. General Inequalities 6 5-16 (Oberwolfach 1990). MR 1212992 | Zbl 0767.26013
[4] Beckenbach, Edwin F., Bellman, Richard: Inequalities. Springer, Berlin (1961). MR 0158038 | Zbl 0097.26502
[5] Bullen, P. S.: The Jensen-Steffensen inequality. Math. Ineq. Appl. 1 (1998), 391-401. MR 1629400 | Zbl 0989.26014
[6] Bullen, P. S.: Handbook of Means and Their Inequalities. Kluwer Academic Publishers, Dordrecht (2003). MR 2024343 | Zbl 1035.26024
[7] Daróczy, Zoltán, Páles, Zsolt: On a class of means of several variables. Math. Ineq. Appl. 4 (2001), 331-334. MR 1841066 | Zbl 0990.26018
[8] Hardy, G. H., Littlewood, E. J., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934).
[9] Landsberg, P. T., Pečarić, E. J.: Thermodynamics, inequalities and negative heat capacities. Phys. Rev. A35 (1987), 4397-4403. DOI 10.1103/PhysRevA.35.4397
[10] Marshall, Albert W., Olkin, Ingram: Inequalities: Theory of Majorization and Its Applications. Academic Press, New York (1979). MR 0552278 | Zbl 0437.26007
[11] Matković, Anita, Pečarić, Josip: A variant of Jensen's inequality for convex functions of several variables. J. Math. Ineq. 1 (2007), 45-51. DOI 10.7153/jmi-01-06 | MR 2347704 | Zbl 1147.26012
[12] Mitrinović, D. S., Pečarić, E. J., Fink, M. A.: Classical and New Inequalities in Analysis. Reidel, Dordrecht (1993).
[13] Nanjundiah, T. S.: Sharpening some classical inequalities. Math. Student 20 (1952), 24-25.
[14] Pečari'c, J. E.: Inverse of Jensen-Steffensen inequality. Glasnik Mat. 16 (1981), 229-233. MR 0653052
[15] Pečari'c, Josip E.: A new proof of the Jensen-Steffensen inequality. Mathematica Rév. Anal. Num. Théorie Appr. 23 (1981), 73-77. MR 0649387
[16] Pečari'c, J. E.: Inverse of Jensen-Steffensen inequality. (II), Glasnik Mat. 19 (1984), 235-238. MR 0790010
[17] Pečari'c, Josip E.: A simple proof of the Jensen-Steffensen inequality. Amer. Math. Monthly 91 (1984), 195-196. DOI 10.2307/2322359 | MR 0734933
[18] Pečari'c, Josip E.: Notes on Jensen's inequality. General Inequalities 6 (Oberwolfach, 1990) 449-454 Internat. Ser. Numer. Math., 103, Birkhäuser, Basel (1992). MR 1213027
[19] Pečarić, Josip E., Proschan, Frank, Tong, L. Y.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, New York (1992). MR 1162312
[20] Wayne, Roberts, A., Varberg, Dale E.: Convex Functions. Academic Press, New York (1973). MR 0442824
[21] Steffensen, J. F.: On certain inequalities and methods of approximation. J. Inst. Actuar. 51 (1919), 274-297.
[22] Vasić, Petar M., Pečarić, Josip E.: On the Jensen inequality. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634--No. 677 (1979), 50-54. MR 0579260
Partner of
EuDML logo