Previous |  Up |  Next

Article

Title: On the lonely runner conjecture (English)
Author: Pandey, Ram Krishna
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 1
Year: 2010
Pages: 63-68
Summary lang: English
.
Category: math
.
Summary: Suppose $k+1$ runners having nonzero distinct constant speeds run laps on a unit-length circular track. The Lonely Runner Conjecture states that there is a time at which a given runner is at distance at least $1/(k+1)$ from all the others. The conjecture has been already settled up to seven ($k \leq 6$) runners while it is open for eight or more runners. In this paper the conjecture has been verified for four or more runners having some particular speeds using elementary tools. (English)
Keyword: congruences
Keyword: arithmetic progression
Keyword: bi-arithmetic progression
MSC: 11B25
MSC: 11B75
idZBL: Zbl 1224.11013
idMR: MR2643356
DOI: 10.21136/MB.2010.140683
.
Date available: 2010-07-20T18:22:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140683
.
Reference: [1] Barajas, J., Serra, O.: Regular chromatic number and the lonely runner problem.Electron. Notes Discrete Math. 29 (2007), 479-483. Zbl 1215.05052, MR 2398840, 10.1016/j.endm.2007.07.085
Reference: [2] Barajas, J., Serra, O.: The lonely runner with seven runners.Electron. J. Combin. 15 (2008), \# R 48. Zbl 1206.11030, MR 2398840, 10.37236/772
Reference: [3] Betke, U., Wills, J. M.: Untere Schranken für zwei diophantische Approximations-Funktionen.Monatsh. Math. 76 (1972), 214-217. Zbl 0239.10016, MR 0313194, 10.1007/BF01322924
Reference: [4] Bienia, W., Goddyn, L., Gvozdjak, P., Sebő, A., Tarsi, M.: Flows, view obstructions and the lonely runner.J. Combin. Theory Ser. B 72 (1998), 1-9. MR 1604673, 10.1006/jctb.1997.1770
Reference: [5] Bohman, T., Holzman, R., Kleitman, D.: Six lonely runners.Electron. J. Combin. 8 (2001), \# R 3. Zbl 1011.11048, MR 1853254, 10.37236/1602
Reference: [6] Cusick, T. W.: View-obstruction problems in $n$-dimensional geometry.J. Combin. Theory Ser. A 16 (1974), 1-11. Zbl 0273.10025, MR 0332539, 10.1016/0097-3165(74)90066-1
Reference: [7] Cusick, T. W., Pomerance, C.: View-obstruction problems III.J. Number Theory 19 (1984), 131-139. Zbl 0563.10026, MR 0762763, 10.1016/0022-314X(84)90097-0
Reference: [8] Freiman, G. A.: Foundations of a structural theory of set addition.Transl. Math. Monogr. 37 (1973), American Mathematical Society, Providence, R.I Zbl 0271.10044, MR 0360496
Reference: [9] Freiman, G. A.: Inverse problem of additive number theory IV. On addition of finite sets II.Ucen. Zap. Elabuz. Gos. Ped. Inst. 8 (1960), 72-116.
Reference: [10] Haralambis, N. M.: Sets of integers with missing differences.J. Combin. Theory Ser. A 23 (1977), 22-33. Zbl 0359.10047, MR 0453689, 10.1016/0097-3165(77)90076-0
Reference: [11] Jin, R.: Freiman's inverse problem with small doubling property.Adv. Math. 216 (2007), 711-752. Zbl 1231.11012, MR 2351375, 10.1016/j.aim.2007.06.002
Reference: [12] Pandey, R. K.: A note on the lonely runner conjecture.J. Integer Sequences 12 (2009), Article 09.4.6. Zbl 1233.11026, MR 2511224
Reference: [13] Renault, J.: View-obstruction: a shorter proof for six lonely runners.Discrete Math. 287 (2004), 93-101. MR 2094060, 10.1016/j.disc.2004.06.008
Reference: [14] Wills, J. M.: Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen.Monatsh. Math. 71 (1967), 263-269. Zbl 0148.27505, MR 0227112, 10.1007/BF01298332
.

Files

Files Size Format View
MathBohem_135-2010-1_6.pdf 212.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo