Previous |  Up |  Next


order; product of chains; ideal of maximum height; digit sum sequence
We maximize the total height of order ideals in direct products of finitely many finite chains. We also consider several order ideals simultaneously. As a corollary, a shifting property of some integer sequences, including digit sum sequences, is derived.
[1] Bollobás, B., Leader, I.: Sums in the grid. Discrete Math. 162 (1996), 31-48. DOI 10.1016/S0012-365X(96)00303-2 | MR 1425777
[2] Czédli, G., Maróti, M., Schmidt, E. T.: On the scope of averaging for Frankl's conjecture. Order 26 (2009), 31-48. DOI 10.1007/s11083-008-9105-5 | MR 2487167 | Zbl 1229.05259
[3] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Second edition, Cambridge University Press, New York (2002), xii+298. MR 1902334 | Zbl 1002.06001
[4] Gel'fond, A. O.: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13 (1967/1968), 259-265. DOI 10.4064/aa-13-3-259-265 | MR 0220693
[5] Grätzer, G.: General Lattice Theory. New appendices with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung, R. Wille; Second edition. Birkhäuser, Basel (1998). MR 1670580
[6] Grätzer, G.: The congruences of a finite lattice. A proof-by-picture approach, Birkhäuser Boston, MA (2006), The Glossary of Notation is available as a pdf file at$_-$into$_-$LaTeX-4/notation.pdf MR 2177459 | Zbl 1106.06001
[7] Lindström, B.: On a combinatorial problem in number theory. Canad. Math. Bull. 8 (1965), 477-490. DOI 10.4153/CMB-1965-034-2 | MR 0181604
Partner of
EuDML logo