Previous |  Up |  Next

Article

Title: Li-Yorke pairs of full Hausdorff dimension for some chaotic dynamical systems (English)
Author: Neunhäuserer, J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 3
Year: 2010
Pages: 279-289
Summary lang: English
.
Category: math
.
Summary: We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets. (English)
Keyword: Li-Yorke chaos
Keyword: Hausdorff dimension
MSC: 37B05
MSC: 37C45
idZBL: Zbl 1224.37011
idMR: MR2683639
DOI: 10.21136/MB.2010.140704
.
Date available: 2010-07-20T18:44:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140704
.
Reference: [1] Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs.J. Reine Angew. Math. 547 51-68 (2002). Zbl 1059.37006, MR 1900136
Reference: [2] Blanchard, F., Huang, W., Snoah, L.: Topological size of scrambled sets.Colloquium Mathematicum 110 293-361 (2008). MR 2353910, 10.4064/cm110-2-3
Reference: [3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications.Wiley, New York (1990). Zbl 0689.28003, MR 1102677
Reference: [4] Hutchinson, J. E.: Fractals and self-similarity.Indiana Univ. Math. J. 30 271-280 (1981). Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055
Reference: [5] Katok, A., Hasselblatt, B.: Introduction to Modern Theory of Dynamical Systems.Cambridge University Press (1995). MR 1326374
Reference: [6] Li, T.-Y., Yorke, J. A.: Period three implies chaos.Amer. Math. Monthly 82 985-992 (1975). Zbl 0351.92021, MR 0385028, 10.2307/2318254
Reference: [7] Marstrand, J. M.: The dimension of Cartesian product sets.Proc. Camb. Philos. Soc. 50 198-202 (1954). Zbl 0055.05102, MR 0060571, 10.1017/S0305004100029236
Reference: [8] Moran, P.: Additive functions of intervals and Hausdorff measure.Proc. Cambridge Philos. Soc. 42 15-23 (1946). Zbl 0063.04088, MR 0014397
Reference: [9] Neunhäuserer, J.: Dimension theoretical properties of generalized Baker's transformations.Nonlinearity 15 1299-1307 (2002). Zbl 1148.37300, MR 1912296, 10.1088/0951-7715/15/4/315
Reference: [10] Neunhäuserer, J.: Dimension Theory for Linear Solenoids.Fractals 15 63-72 (2007). MR 2281945, 10.1142/S0218348X07003423
Reference: [11] Pesin, Ya.: Dimension Theory in Dynamical Systems---Contemplary Views and Applications.University of Chicago Press (1997). MR 1489237
Reference: [12] Smale, S.: Differentiable dynamical systems.Bull. Amer. Math. Soc. 73 747-817 (1967). Zbl 0202.55202, MR 0228014, 10.1090/S0002-9904-1967-11798-1
Reference: [13] Young, L.-S.: Dimension, entropy and Lyapunov exponents.Ergodic Theory Dyn. Syst. 2 109-124 (1982). Zbl 0523.58024, MR 0684248
.

Files

Files Size Format View
MathBohem_135-2010-3_4.pdf 252.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo