[1] Ahalt, S. C., Krishnamurthy, A. K., Chen, P. K., Melton, D. E.: Competative learning algorithms for vector quantization. Neural Networks 4 (1993), 3, 277 – 290.
[2] Assenza, A., Valle, M., Verleysen, M.: A comparative study of various probabilty density estimation methods for data analysis. Internat. J. Comput. Intell. Systems 1 (2009), 2, 188–201.
[3] Fan, J., Yao, Q.:
Nonlinear Time Series: Nonparametric and Parametric Methods. (Springer Series in Statistics.) Springer-Verlag, Berlin 2005.
MR 1964455 |
Zbl 1014.62103
[4] Härdle, W., Müller, M., Sperlich, S., Werwatz, A.:
Nonparametric and Semiparametric Models. Springer-Verlag, New York 2004.
MR 2061786
[5] Kostelich, E. J., Yorke, J. A.:
Noise reduction: Finding the simplest dynamical system consistent with the data. Physica D 41 (1990), 183–196.
MR 1049125 |
Zbl 0705.58036
[8] Nachtegael, M., Weken, D. Van der, Ville, D. Van De, Kerre, E. E., eds.: Fuzzy Filters for Image Processing. (Studies in Fuzziness and Soft Computing.) Springer-Verlag, 2003.
[10] Perfilieva, I.:
Fuzzy transforms: Theory and applications. Fuzzy Sets and Systems 157 (2006), 8, 993–1023.
MR 2218243 |
Zbl 1092.41022
[11] Perfilieva, I., Valášek, R.: Fuzzy transforms in removing noise. In: Innovation in Hybrid Intelligent Systems. Springer-Verlag, Berlin – Heidelberg 2005.
[12] Silverman, B. W.:
Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London 1986.
MR 0848134 |
Zbl 0617.62042
[14] Stefanini, L.: Fuzzy transforms and smooth function. In: Proc. IFSA/EUSFLAT 2009, Lisabon 2009.