Previous |  Up |  Next

Article

Title: On hyperplanes and semispaces in max–min convex geometry (English)
Author: Nitica, Viorel
Author: Sergeev, Sergeĭ
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 548-557
Summary lang: English
.
Category: math
.
Summary: The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry. (English)
Keyword: tropical convexity
Keyword: fuzzy algebra
Keyword: separation
MSC: 08A72
MSC: 14T05
MSC: 52A01
MSC: 52A30
idZBL: Zbl 1193.14076
idMR: MR2676090
.
Date available: 2010-09-13T17:04:39Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140768
.
Reference: [1] Birkhoff, G.: Lattice Theory.American Mathematical Society, Providence, RI 1993. Zbl 0537.06001
Reference: [2] Cechlárová, K.: Eigenvectors in bottleneck algebra.Linear Algebra Appl. 175 (1992), 63–73. MR 1179341
Reference: [3] Cohen, G., Gaubert, S., Quadrat, J. P., Singer, I.: Max-plus convex sets and functions.In: Idempotent Mathematics and Mathematical Physics (G. Litvinov and V. Maslov, eds.), AMS, Providence 2005, pp. 105–129. E-print arXiv:math/0308166. Zbl 1093.26005, MR 2149000
Reference: [4] Develin, M., Sturmfels, B.: Tropical convexity.Documenta Math. 9 (2004), 1–27. E-print arXiv:math/0308254. Zbl 1054.52004, MR 2054977
Reference: [5] Gaubert, S., Katz, R.: Max-plus convex geometry.In: Lecture Notes in Computer Science 4136, Springer, New York 2006. pp. 192–206. Zbl 1134.52303, MR 2281601, 10.1007/11828563_13
Reference: [6] Gaubert, S., Sergeev, S.: Cyclic projectors and separation theorems in idempotent convex geometry.J. Math. Sci. 155 (2008), 6, 815–829. E-print arXiv:math/0706.3347. Zbl 1173.47045, MR 2366235, 10.1007/s10958-008-9243-8
Reference: [7] Gavalec, M.: Periodicity in Extremal Algebras.Gaudeamus, Hradec Králové 2004.
Reference: [8] Gavalec, M., Plávka, J.: Strong regularity of matrices in general max-min algebra.Linear Algebra Appl. 371 (2003), 241–254. MR 1997373
Reference: [9] Golan, J.: Semirings and Their Applications.Kluwer, Dordrecht 2000. Zbl 0947.16034, MR 1746739
Reference: [10] Litvinov, G. L., Maslov, V. P., Shpiz, G. B.: Idempotent functional analysis: an algebraic approach.Math. Notes 69 (2001), 5, 758–797. Zbl 1017.46034, MR 1846814
Reference: [11] Nitica, V.: The structure of max-min hyperplanes.Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.08.022. Zbl 1180.52005, MR 2566489
Reference: [12] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces.I. Optimization 56 (2007), 171–205. Zbl 1127.52001, MR 2288512, 10.1080/02331930600819852
Reference: [13] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces.II. Optimization 56 (2007), 293–303. Zbl 1127.52001, MR 2326254, 10.1080/02331930601123031
Reference: [14] Nitica, V., Singer, I.: Contributions to max-min convex geometry.I. Segments. Linear Algebra Appl. 428 (2008), 7, 1439–1459. Zbl 1134.52300, MR 2388630, 10.1016/j.laa.2007.09.032
Reference: [15] Nitica, V., Singer, I.: Contributions to max-min convex geometry.II. Semispaces and convex sets. Linear Algebra Appl. 428 (2008), 8–9, 2085–2115. Zbl 1134.52300, MR 2401643
Reference: [16] Sergeev, S. N.: Algorithmic complexity of a problem of idempotent convex geometry.Math. Notes 74 (2003), 6, 848–852. Zbl 1108.52301, MR 2054008, 10.1023/B:MATN.0000009021.18823.52
Reference: [17] Zimmermann, K.: A general separation theorem in extremal algebras.Ekonom.-Mat. Obzor 13 (1977), 179–201. Zbl 0365.90127, MR 0453607
Reference: [18] Zimmermann, K.: Convexity in semimodules.Ekonom.-Mat. Obzor 17 (1981), 199–213. Zbl 0477.52002, MR 0629908
.

Files

Files Size Format View
Kybernetika_46-2010-3_18.pdf 456.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo