Previous |  Up |  Next

Article

Title: Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping (English)
Author: Zaraï, Abderrahmane
Author: Tatar, Nasser-eddine
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 3
Year: 2010
Pages: 157-176
Summary lang: English
.
Category: math
.
Summary: A viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping is considered. Using integral inequalities and multiplier techniques we establish polynomial decay estimates for the energy of the problem. The results obtained in this paper extend previous results by Tatar and Zaraï [25]. (English)
Keyword: Balakrishnan-Taylor damping
Keyword: polynomial decay
Keyword: memory term
Keyword: viscoelasticity
MSC: 35A01
MSC: 35B40
MSC: 35L20
MSC: 35L70
MSC: 45K05
MSC: 74H25
MSC: 74K05
idZBL: Zbl 1240.35330
idMR: MR2735903
.
Date available: 2010-10-22T05:33:40Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/140784
.
Reference: [1] Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory.J. Funct. Anal. 254 (5) (2008), 1342–1372. Zbl 1145.35025, MR 2386941, 10.1016/j.jfa.2007.09.012
Reference: [2] Appleby, J. A. D., Fabrizio, M., Lazzari, B., Reynolds, D. W.: On exponential asymptotic stability in linear viscoelasticity.Math. Models Methods Appl. Sci. 16 (2006), 1677–1694. Zbl 1114.45003, MR 2264556, 10.1142/S0218202506001674
Reference: [3] Balakrishnan, A. V., Taylor, L. W.: Distributed parameter nonlinear damping models for flight structures.Damping 89', Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.
Reference: [4] Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolution equations.Quart. J. Math. Oxford 28 (1977), 473–486. Zbl 0377.35037, MR 0473484, 10.1093/qmath/28.4.473
Reference: [5] Bass, R. W., Zes, D.: Spillover, nonlinearity and flexible structures.The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (L.W.Taylor, ed.), 1991, pp. 1–14.
Reference: [6] Berrimi, S., Messaoudi, S.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source.Nonlinear Anal. 64 (2006), 2314–2331. Zbl 1094.35070, MR 2213903
Reference: [7] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping.Differential Integral Equations 14 (1) (2001), 85–116. MR 1797934
Reference: [8] Cavalcanti, M. M., Oquendo, H. P.: Frictional versus viscoelastic damping in a semilinear wave equation.SIAM J. Control Optim. (electronic) 42 (4) (2003), 1310–1324. Zbl 1053.35101, MR 2044797, 10.1137/S0363012902408010
Reference: [9] Clark, H. R.: Elastic membrane equation in bounded and unbounded domains.Electron. J. Qual. Theory Differ. Equ. 11 (2002), 1–21. Zbl 1032.35039, MR 1918508
Reference: [10] Glassey, R. T.: Blow-up theorems for nonlinear wave equations.Math. Z. 132 (1973), 183–203. Zbl 0247.35083, MR 0340799, 10.1007/BF01213863
Reference: [11] Haraux, A., Zuazua, E.: Decay estimates for some semilinear damped hyperbolic problems.Arch. Rational Mech. Anal. 100 (1988), 191–206. Zbl 0654.35070, MR 0913963, 10.1007/BF00282203
Reference: [12] Kalantarov, V. K., Ladyzhenskaya, O. A.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type.J. Soviet Math. 10 (1978), 53–70. 10.1007/BF01109723
Reference: [13] Kirchhoff, G.: Vorlesungen über Mechanik.Tauber, Leipzig, 1883.
Reference: [14] Komornik, V.: Exact controllability and stabilization. The multiplier method.RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. Zbl 0937.93003, MR 1359765
Reference: [15] Kopackova, M.: Remarks on bounded solutions of a semilinear dissipative hyperbolic equation.Comment. Math. Univ. Carolin. 30 (1989), 713–719. Zbl 0707.35026, MR 1045899
Reference: [16] Li, M. R., Tsai, L. Y.: Existence and nonexistence of global solutions of some systems of semilinear wave equations.Nonlinear Anal. 54 (2003), 1397–1415. MR 1997226
Reference: [17] Matsuyama, T., Ikehata, R.: On global solutions and energy decay for the wave equation of Kirchhoff type with nonlinear damping terms.J. Math. Anal. Appl. 204 (3) (1996), 729–753. MR 1422769, 10.1006/jmaa.1996.0464
Reference: [18] Medjden, M., e. Tatar, N.: On the wave equation with a temporal nonlocal term.Dynam. Systems Appl. 16 (2007), 665–672. MR 2370149
Reference: [19] Nakao, M.: Decay of solutions of some nonlinear evolution equation.J. Math. Anal. Appl. 60 (1977), 542–549. MR 0499564, 10.1016/0022-247X(77)90040-3
Reference: [20] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms.Funkcial. Ekvac. 33 (1990), 151–159. Zbl 0715.35053, MR 1065473
Reference: [21] Ono, K.: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings.J. Differential Equations 137 (2) (1997), 273–301. Zbl 0879.35110, MR 1456598, 10.1006/jdeq.1997.3263
Reference: [22] Ono, K.: On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation.Math. Methods Appl. Sci. 20 (1997), 151–177. Zbl 0878.35081, MR 1430038, 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
Reference: [23] Ono, K.: On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation.J. Math. Anal. Appl. 216 (1997), 321–342. Zbl 0893.35078, MR 1487267, 10.1006/jmaa.1997.5697
Reference: [24] Pata, V.: Exponential stability in linear viscoelasticity.Quart. Appl. Math. 64 (3) (2006), 499–513. Zbl 1117.35052, MR 2259051
Reference: [25] Tatar, N-e. and Zaraï, A., : Exponential stability and blow up for a problem with Balakrishnan-Taylor damping.to appear in Demonstratio Math.
Reference: [26] Tatar, N-e. and Zaraï, A., : On a Kirchhoff equation with Balakrishnan-Taylor damping and source term.to apper in DCDIS.
Reference: [27] You, Y.: Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping.Abstr. Appl. Anal. 1 (1) (1996), 83–102. Zbl 0940.35036, MR 1390561, 10.1155/S1085337596000048
.

Files

Files Size Format View
ArchMathRetro_046-2010-3_1.pdf 499.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo