Previous |  Up |  Next

Article

Title: Estimate of the Hausdorff measure of the singular set of a solution for a semi-linear elliptic equation associated with superconductivity (English)
Author: Aramaki, Junichi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 3
Year: 2010
Pages: 185-201
Summary lang: English
.
Category: math
.
Summary: We study the boundedness of the Hausdorff measure of the singular set of any solution for a semi-linear elliptic equation in general dimensional Euclidean space ${\mathbb{R}}^n$. In our previous paper, we have clarified the structures of the nodal set and singular set of a solution for the semi-linear elliptic equation. In particular, we showed that the singular set is $(n-2)$-rectifiable. In this paper, we shall show that under some additive smoothness assumptions, the $(n-2) $-dimensional Hausdorff measure of singular set of any solution is locally finite. (English)
Keyword: singular set
Keyword: semi-linear elliptic equation
Keyword: Ginzburg-Landau system
MSC: 35B65
MSC: 35J60
MSC: 35J61
MSC: 47F05
MSC: 82D37
MSC: 82D55
idZBL: Zbl 1240.82013
idMR: MR2735905
.
Date available: 2010-10-22T05:35:28Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/140787
.
Reference: [1] Aramaki, J.: On an elliptic model with general nonlinearity associated with superconductivity.Int. J. Differ. Equ. Appl. 10 (4) (2006), 449–466. MR 2321824
Reference: [2] Aramaki, J.: On an elliptic problem with general nonlinearity associated with superheating field in the theory of superconductivity.Int. J. Pure Appl. Math. 28 (1) (2006), 125–148. Zbl 1112.82053, MR 2227157
Reference: [3] Aramaki, J.: A remark on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity.Int. J. Pure Appl. Math. 50 (1) (2008), 97–110. MR 2478221
Reference: [4] Aramaki, J.: Nodal sets and singular sets of solutions for semi-linear elliptic equations associated with superconductivity.Far East J. Math. Sci. 38 (2) (2010), 137–179. Zbl 1195.82103, MR 2662062
Reference: [5] Aramaki, J., Nurmuhammad, A., Tomioka, S.: A note on a semi-linear elliptic problem with the de Gennes boundary condition associated with superconductivity.Far East J. Math. Sci. 32 (2) (2009), 153–167. Zbl 1171.82020, MR 2522753
Reference: [6] Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order.J. Math. Pures Appl. (9) 36 (1957), 235–249. Zbl 0084.30402, MR 0092067
Reference: [7] Elliot, C. M., Matano, H., Tang, Q.: Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity.European J. Appl. Math. 5 (1994), 431–448. MR 1309733
Reference: [8] Federer, H.: Geometric Measure Theory.Springer, Berlin, 1969. Zbl 0176.00801, MR 0257325
Reference: [9] Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, $A_p$ weights and unique continuation.Indiana Univ. Math. J. 35 (2) (1986), 245–268. MR 0833393, 10.1512/iumj.1986.35.35015
Reference: [10] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order.Springer, New York, 1983. Zbl 0562.35001, MR 0737190
Reference: [11] Han, Q.: Singular sets of solutions to elliptic equations.Indiana Univ. Math. J. 43 (1994), 983–1002. Zbl 0817.35020, MR 1305956, 10.1512/iumj.1994.43.43043
Reference: [12] Han, Q.: Schauder estimates for elliptic operators with applications to nodal set.J. Geom. Anal. 10 (3) (2000), 455–480. MR 1794573, 10.1007/BF02921945
Reference: [13] Han, Q., Hardt, R., Lin, F.-G.: Geometric measure of singular sets of elliptic equations.Comm. Pure Appl. Math. 51 (1998), 1425–1443. Zbl 0940.35065, MR 1639155, 10.1002/(SICI)1097-0312(199811/12)51:11/12<1425::AID-CPA8>3.0.CO;2-3
Reference: [14] Hardt, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashivili, N.: Critical sets of solutions to elliptic equations.J. Differential Geom. 51 (1999), 359–373. MR 1728303
Reference: [15] Helffer, B., Mohamed, A.: Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells.J. Funct. Anal. 138 (1996), 40–81. Zbl 0851.58046, MR 1391630, 10.1006/jfan.1996.0056
Reference: [16] Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity.J. Funct. Anal. 185 (2001), 604–680. Zbl 1078.81023, MR 1856278, 10.1006/jfan.2001.3773
Reference: [17] Lu, K., Pan, X.-B.: Estimates of upper critical field for the Ginzburg-Landau equations of superconductivity.Physica D 127 (1999), 73–104. MR 1678383, 10.1016/S0167-2789(98)00246-2
Reference: [18] Lu, K., Pan, X.-B.: Surface nucleation of supeconductivity in $3$-dimension.J. Differential Equations 168 (2000), 386–452. MR 1808455, 10.1006/jdeq.2000.3892
Reference: [19] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces.Cambridge Univ. Press, 1995. Zbl 0819.28004, MR 1333890
Reference: [20] Morgan, F.: Geometric Measure Theory, A beginner’s Guide.fourth ed., Academic Press, 2009. Zbl 1179.49050, MR 2455580
Reference: [21] Pan, X.-B.: Landau-de Gennes model of liquid crystals and critical wave number.Comm. Math. Phys. 239 (2003), 343–382. Zbl 1056.49005, MR 1997445, 10.1007/s00220-003-0875-8
Reference: [22] Pan, X.-B.: Surface superconductivity in $3$-dimensions.Trans. Amer. Math. Soc. 356 (2004), 3899–3937. Zbl 1051.35090, MR 2058511, 10.1090/S0002-9947-04-03530-5
Reference: [23] Pan, X.-B.: Nodal sets of solutions of equations involving magnetic Schrödinger operator in three dimension.J. Math. Phys. 48 (2007), 053521. MR 2329883, 10.1063/1.2738752
Reference: [24] Pan, X.-B., Kwek, K. H.: On a problem related to vortex nucleation of superconductivity.J. Differential Equations 182 (2002), 141–168. Zbl 1064.35057, MR 1912073, 10.1006/jdeq.2001.4093
.

Files

Files Size Format View
ArchMathRetro_046-2010-3_3.pdf 535.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo