Previous |  Up |  Next

Article

Title: Generalized derivations associated with Hochschild 2-cocycles on some algebras (English)
Author: Li, Jiankui
Author: Zhou, Jiren
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 909-932
Summary lang: English
.
Category: math
.
Summary: We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras. (English)
Keyword: CSL algebra
Keyword: generalized derivation
Keyword: generalized Jordan derivation
Keyword: Hochschild 2-cocycle
MSC: 47B47
MSC: 47L35
idZBL: Zbl 1220.47143
idMR: MR2738956
.
Date available: 2010-11-20T13:52:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140793
.
Reference: [1] Ashraf, M., Rehman, N.-Ur: On Jordan generalized derivations in rings.Math. J. Okayama Univ. 42 (2000), 7-9. MR 1887541
Reference: [2] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices.Linear Algebra Appl. 397 (2005), 235-244. MR 2116460
Reference: [3] Brešar, M.: Jordan derivations on semiprime rings.Proc. Am. Math. Soc. 104 (1988), 1103-1106. MR 0929422, 10.1090/S0002-9939-1988-0929422-1
Reference: [4] Brešar, M.: Characterizations of derivations on some normed algebras with involution.J. Algebra 152 (1992), 454-462. MR 1194314, 10.1016/0021-8693(92)90043-L
Reference: [5] Hadwin, D., Li, J.: Local derivations and local automorphisms on some algebras.J. Oper. Theory 60 (2008), 29-44. Zbl 1150.47024, MR 2415555
Reference: [6] Herstein, I. N.: Jordan derivations of prime rings.Proc. Am. Math. Soc. 8 (1958), 1104-1110. Zbl 0216.07202, MR 0095864, 10.1090/S0002-9939-1957-0095864-2
Reference: [7] Hvala, B.: Generalized derivations in rings.Commun. Algebra 26 (1998), 1147-1166. Zbl 0899.16018, MR 1612208, 10.1080/00927879808826190
Reference: [8] Li, J., Pan, Z.: Annihilator-preserving maps, multipliers and local derivations.Linear Algebra Appl. 432 (2010), 5-13. MR 2566454
Reference: [9] Li, J., Pan, Z., Xu, H.: Characterizations of isomorphisms and derivations of some algebras.J. Math. Anal. Appl. 332 (2007), 1314-1322. Zbl 1126.47035, MR 2324339, 10.1016/j.jmaa.2006.10.071
Reference: [10] Longstaff, W., Panaia, O.: $\Cal J$-subspace lattices and subspace $\Cal M$-bases.Stud. Math. 139 (2000), 197-212. MR 1762581
Reference: [11] Lu, F.: The Jordan structure of CSL algebras.Stud. Math. 190 (2009), 283-299. Zbl 1156.47058, MR 2572431, 10.4064/sm190-3-3
Reference: [12] Nakajima, A.: Note on generalized Jordan derivations associated with Hochschild 2-cocycles of rings.Turk. J. Math. 30 (2006), 403-411. MR 2270836
Reference: [13] Nakajima, A.: On categorical properties of generalized derivations.Sci. Math. 2 (1999), 345-352. Zbl 0968.16018, MR 1718278
Reference: [14] Samei, E.: Approximately local derivations.J. Lond. Math. Soc. 71 (2005), 759-778. Zbl 1072.47033, MR 2132382, 10.1112/S0024610705006496
Reference: [15] Zhang, J.: Jordan derivations on nest algebras.Acta Math. Sin. 41 (1998), 205-212 Chinese. Zbl 1103.47315, MR 1612539
Reference: [16] Zhang, J., Yu, W.: Jordan derivations of triangular algebras.Linear Algebra Appl. 419 (2006), 251-255. Zbl 1103.47026, MR 2263119, 10.1016/j.laa.2006.04.015
.

Files

Files Size Format View
CzechMathJ_60-2010-4_3.pdf 286.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo