Previous |  Up |  Next

Article

Title: Cauchy's residue theorem for a class of real valued functions (English)
Author: Sarić, Branko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1043-1048
Summary lang: English
.
Category: math
.
Summary: Let $[ a,b] $ be an interval in $\mathbb R$ and let $F$ be a real valued function defined at the endpoints of $[a,b]$ and with a certain number of discontinuities within $[ a,b] $. Assuming $F$ to be differentiable on a set $[ a,b] \backslash E$ to the derivative $f$, where $E$ is a subset of $[ a,b] $ at whose points $F$ can take values $\pm \infty $ or not be defined at all, we adopt the convention that $F$ and $f$ are equal to $0$ at all points of $E$ and show that $\mathcal {KH}\hbox {\rm -vt}\int _a^bf=F( b) -F( a) $, where $\mathcal {KH}\hbox {\rm -vt}$ denotes the total value of the {\it Kurzweil-Henstock} integral. The paper ends with a few examples that illustrate the theory. (English)
Keyword: Kurzweil-Henstock integral
Keyword: Cauchy's residue theorem
MSC: 26A24
MSC: 26A39
idZBL: Zbl 1224.26029
idMR: MR2738965
.
Date available: 2010-11-20T13:57:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140802
.
Reference: [1] Bartle, R. G.: A Modern Theory of Integration.Graduate Studies in Math. Vol. 32, AMS, Providence (2001). Zbl 0968.26001, MR 1817647, 10.1090/gsm/032/07
Reference: [2] Garces, I. J. L., Lee, P. Y.: Convergence theorem for the $H_1$-integral.Taiw. J. Math. 4 (2000), 439-445. MR 1779108, 10.11650/twjm/1500407260
Reference: [3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Graduate Studies in Math., Vol. 4, AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004/09
Reference: [4] Macdonald, A.: Stokes' theorem.Real Analysis Exchange 27 (2002), 739-747. Zbl 1059.26008, MR 1923163, 10.14321/realanalexch.27.2.0739
Reference: [5] Sinha, V., Rana, I. K.: On the continuity of associated interval functions.Real Analysis Exchange 29 (2003/2004), 979-981. MR 2083833, 10.14321/realanalexch.29.2.0979
.

Files

Files Size Format View
CzechMathJ_60-2010-4_12.pdf 230.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo