Previous |  Up |  Next

Article

Title: An elliptic curve having large integral points (English)
Author: He, Yanfeng
Author: Zhang, Wenpeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1101-1107
Summary lang: English
.
Category: math
.
Summary: The main purpose of this paper is to prove that the elliptic curve $E\colon y^2=x^3+27x-62$ has only the integral points $(x, y)=(2, 0)$ and $(28844402, \pm 154914585540)$, using elementary number theory methods and some known results on quadratic and quartic Diophantine equations. (English)
Keyword: elliptic curve
Keyword: integral point
Keyword: Diophantine equation
MSC: 11D25
idZBL: Zbl 1224.11051
idMR: MR2738972
.
Date available: 2010-11-20T14:01:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140809
.
Reference: [1] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$.J. Lond. Math. Soc. 43 (1968), 1-9. Zbl 0157.09801, MR 0231783, 10.1112/jlms/s1-43.1.1
Reference: [2] Stroeker, R. J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement.Exp. Math. 8 (1999), 135-149. Zbl 0979.11060, MR 1700575, 10.1080/10586458.1999.10504395
Reference: [3] Stroeker, R. J., Tzanakis, N.: Computing all integer solutions of a genus $1$ equation.Math. Comput. 72 (2003), 1917-1933. Zbl 1089.11019, MR 1986812, 10.1090/S0025-5718-03-01497-2
Reference: [4] Zagier, D.: Large integral points on elliptic curves.Math. Comput. 48 (1987), 425-436. Zbl 0611.10008, MR 0866125, 10.1090/S0025-5718-1987-0866125-3
Reference: [5] Walker, D. T.: On the Diophantine equation $mx^2-ny^2=\pm 1$.Am. Math. Mon. 74 (1967), 504-513. MR 0211954, 10.1080/00029890.1967.11999992
Reference: [6] Walsh, G.: A note on a theorem of Ljunggren and the Diophantine equations $x^2-kxy^2+y^4=1,4$.Arch. Math. 73 (1999), 119-125. MR 1703679, 10.1007/s000130050376
.

Files

Files Size Format View
CzechMathJ_60-2010-4_19.pdf 207.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo