Previous |  Up |  Next

Article

Title: Jak řešit úlohy s nejistými vstupními daty? (Czech)
Title: How to solve problems with uncertain input data? (English)
Author: Hlaváček, Ivan
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 44
Issue: 2
Year: 1999
Pages: 111-116
.
Category: math
.
MSC: 49Q20
MSC: 74M10
MSC: 74M15
MSC: 74S05
idZBL: Zbl 1055.74548
.
Date available: 2010-12-11T17:23:11Z
Last updated: 2012-08-25
Stable URL: http://hdl.handle.net/10338.dmlcz/140988
.
Reference: [1] Friedman, A.: Stochastic Differential Equations and Applications, Vols. I, II.Academic Press 1976.
Reference: [2] Haug, E. J., Arora, J. S.: Applied Optimal Design.J. Wiley, New York 1979. (Ruský překlad Mir, Moskva 1983.)
Reference: [3] Haug, E. J., Choi, K. K., Komkov, V.: Design Sensitivity Analysis of Structural Systems.Academic Press, Orlando 1986. (Ruský překlad: Mir, Moskva 1988.) Zbl 0618.73106, MR 0860040
Reference: [4] Hlaváček, I: Reliable solution of elliptic boundary value problems with respect to uncertain data.Nonlinear Analysis. Theory, Meth. & Appls. 30 (1997), 3879–3890. Proc. 2nd World Congress of Nonl. Analysts. MR 1602891
Reference: [5] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients.J. Math. Anal. Appl. 212 (1997), 452–466. MR 1464890
Reference: [6] Hlaváček, I.: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math. 41 (1996), 447–466. MR 1415251
Reference: [7] Hlaváček, I.: Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function.Appl. Math. 43 (1998), 223–237. MR 1620616
Reference: [8] Hlaváček, I.: Reliable solution of a unilateral contact problem with friction, considering uncertain data.Numer. Lin. Algebra w. Appls. (V tisku.)
Reference: [9] Hlaváček, I.: Reliable solution of an elasto-plastic torsion problem.J. Math. Anal. Appl. (V redakčním řízení.)
Reference: [10] Hlaváček, I.: Reliable solution of linear parabolic problems with uncertain coefficients.Z. angew. Math. Mech. 79 (1999), 291–301. MR 1695286
Reference: [11] Hlaváček, I., Chleboun, J.: Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor.(V redakčním řízení.)
Reference: [12] Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations.Birkhäuser; Boston, Basel, Berlin 1996. MR 1408433
Reference: [13] Chleboun, J.: Reliable solution for 1D quasilinear elliptic equation with uncertain coefficients.Zasláno do J. Math. Anal. Appl.
Reference: [14] Chleboun, J.: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: sensitivity analysis and numerical examples.(Připraveno k tisku.) Zbl 1002.35041
Reference: [15] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes (2nd edition).North-Holland/Kodansha 1989. MR 1011252
Reference: [16] Litvinov, V. G.: Optimizacija v eliptičeskich krajevych zadačach s primeněnijami k mechanike.Nauka, Moskva 1987.
Reference: [17] Natke, H. G., Zamirowski, M.: ARMAX Modelling in Structural Dynamics.Z. angew. Math. Mech. 72 (1992), 631–637; 73 (1993), 217–221. Zbl 0778.93015
Reference: [18] Nedoma, J.: Inaccurate linear equation system with a restricted-rank error matrix.Linear and Multilinear Algebra 44 (1998), 29–44. Zbl 0907.15004, MR 1638938
Reference: [19] Rohn, J.: Positive definiteness and stability of interval matrices.SIAM J. Matrix Anal. Appl. 15 (1994), 175–184. Zbl 0796.65065, MR 1257627
Reference: [20] Walsh, J. B.: An introduction to stochastic partial differential equations.In: Carmona, R., Kesten, H., Walsh, J. B. (ed.), École d’Été de Probabilité de Saint Flour XIV-1984. Springer LNM 1180, str. 265–437. MR 0876085
.

Files

Files Size Format View
PokrokyMFA_44-1999-2_2.pdf 239.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo