Previous |  Up |  Next

Article

Title: $A$-stabilní metody libovolně vysokého řádu (Czech)
Title: $A$-stable methods of arbitrarily high order (English)
Author: Vitásek, Emil
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 51
Issue: 1
Year: 2006
Pages: 61-68
.
Category: math
.
Keyword: stiff differential system
Keyword: $A$-stability
Keyword: selfstarting block method
Keyword: initial value problem
MSC: 34A30
MSC: 65L04
MSC: 65L05
MSC: 65L20
idZBL: Zbl 1265.65143
.
Date available: 2010-12-11T21:27:53Z
Last updated: 2015-11-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141301
.
Reference: [1] Baker, G. A. Jr., Graves-Morris, P.: Padé Approximations.Cambridge University Press, New York 1996. MR 1383091
Reference: [2] Butcher, J. C.: The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods.John Wiley & Sons, Chichester 1987. Zbl 0616.65072, MR 0878564
Reference: [3] Butcher, J. C., Jackiewicz, Z.: Construction of high order diagonally implicit multistage integration methods for ordinary differential equations.Applied Numerical Mathematics 21 (1996), 385–415. MR 1423426, 10.1016/S0168-9274(96)00043-8
Reference: [4] Dahlquist, G.: A special stability problem for linear multistep methods.BIT 3 (1953), 27–43. MR 0170477, 10.1007/BF01963532
Reference: [5] Golub, H. G., Loan, Ch. F. van: Matrix Computations.John Hopkins University Press, Baltimore 1989. MR 1002570
Reference: [6] Lambert, J. D.: Numerical methods for ordinary differential systems.John Wiley & Sons, London 1991. Zbl 0745.65049, MR 1127425
Reference: [7] Práger, M., Taufer, J., Vitásek, E.: Overimplicit multistep methods.Apl. Mat. 18 (1973), 399–421. MR 0366041
.

Files

Files Size Format View
PokrokyMFA_51-2006-1_8.pdf 268.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo