Previous |  Up |  Next

Article

Title: Univerzální přírodní tvary (Czech)
Title: Universal natural shapes (English)
Author: Verstraelen, Leopold
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 52
Issue: 2
Year: 2007
Pages: 142-151
.
Category: math
.
Keyword: geometry
Keyword: curve
Keyword: surface
MSC: 00A99
MSC: 51-01
MSC: 53A04
MSC: 53A05
MSC: 53A07
MSC: 92-01
idZBL: Zbl 1265.53006
Note: Z elektronického preprintu se svolením autora přeložil O. Kowalski. (Czech)
Note: From an electronic preprint translated with author's permission by O. Kowalski. (English)
.
Date available: 2010-12-11T22:09:45Z
Last updated: 2015-11-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141350
.
Reference: [1] Verstraelen, L.: The geometry of eye and brain.Soochow Journal of Mathematics 30 (2004) (volume in honour of Professor Bang-Yen Chen), 367–376. Zbl 1131.92303, MR 2093862
Reference: [2] Coolidge, J. L.: A history of geometrical methods.Dover Publ., London (1963). Zbl 0113.00103, MR 0160143
Reference: [3] Bronowski, J.: The ascent of man.Litte, Brown & Co, Boston 1973.
Reference: [4] Lejeune, A.: Euclide et Ptolémée, deux stades de l’optique géométrique grecque.Université de Louvain, Bureau du “Recueil” (1948). Zbl 0039.24102, MR 0028212
Reference: [5] Montel, P.: Encyclopédie française, Tome 1.Larousse, Paris 1937.
Reference: [6] Dillen, F., Verstraelen, L.: Handbook of differential geometry.North-Holland, Amsterdam, Vol. 1 (2000) and Vol. 2 (2005). Zbl 1069.00010, MR 1736851
Reference: [7] Chern, S. S., Chen, W. H., Laser, K. S.: Lectures on differential geometry.World Scientific, Singapore 1999. MR 1735502
Reference: [8] Kühnel, W.: Differential geometry: curves-surfaces-manifolds.AMS-Student Math. Library, vol. 16 (2002). Zbl 1009.53002, MR 1882174
Reference: [9] Penrose, R.: The geometry of the universe.In Mathematics Today (ed. Steen, L. A.), Vintage Books, New York 1980. MR 0599181
Reference: [10] Penrose, R.: The emperor’s new mind, concerning computers, minds and the laws of physics.Oxford University Press, Oxford 1989. MR 1048125
Reference: [11] Browder, F. E., Mac Lane, S.: The relevance of mathematics.In Mathematics Today (ed. Steen, L. A.), Vintage Books, New York 1980.
Reference: [12] Hilbert, D.: Mathematical problems (1900 – Paris – Lecture).AMS-Proceedings of Symposia in Pure Mathematics, Vol. 28 (1976).
Reference: [13] d’Arcy Thompson, W.: On growth and form.Cambridge University Press, Cambridge 1917. MR 0128562
Reference: [14] Lamé, G.: Examen des différentes méthodes employées pour résoudre les problèmes de géométrie.Hermann, Paris 1818.
Reference: [15] Thompson, A. C.: Minkowski geometry.Encyclopedia of mathematics and its applications, Vol. 63, Cambridge University Press, Cambridge 1996. Zbl 0868.52001, MR 1406315
Reference: [16] Chen, B.-Y.: What can we do with Nash’s embedding theorem?.Soochow Journal of Mathematics 30 (2004), 303–338. Zbl 1077.53044, MR 2093858
Reference: [17] Chen, B.-Y.: Riemannian submanifolds.In [6, Vol. 1]. Zbl 1079.53077
Reference: [18] Hildebrandt, S., Tromba, A.: Panoptimum.Spektrum, Heidelberg 1986. MR 1040828
Reference: [19] Willmore, T. J.: A survey on Willmore immersions.In Geometry and Topology of submanifolds, Vol. IV, (eds. Dillen, F., Verstraelen, L.), World Scientific, Singapore 1992. Zbl 0841.53051, MR 1185712
Reference: [20] Chen, B.-Y.: Total mean curvature and submanifolds of finite type.World Scientific, Singapore 1984. Zbl 0537.53049, MR 0749575
Reference: [21] Barros, M.: The conformal total tension variational problem in Kaluza-Klein supergravity.Nuclear Physics B 535 (1998), 531–551. Zbl 1041.83512, MR 1666496, 10.1016/S0550-3213(98)00601-4
Reference: [22] Barros, M.: Willmore-Chen branes and Hopf T-duality.Class. Quantum Grav. 17 (2000), 1979–1988. Zbl 0967.83031, MR 1764006, 10.1088/0264-9381/17/9/308
Reference: [23] Gielis, J., Haesen, S., Verstraelen, L.: Universal natural shapes; from the supereggs of Piet Hein to the cosmic egg of Georges Lemaître.Kragujevac Journal of Mathematics 28 (2005), 57–68. MR 2211243
Reference: [24] Gielis, J.: A generic transformation that unifies a large number of natural and abstract shapes.American Journal of Botamy 90 (2003), 333–338. 10.3732/ajb.90.3.333
Reference: [25] Gielis, J.: Inventing the circle.Geniaal Press, Antwerpen (2003).
Reference: [26] Gielis, J., Gerats, T.: A botanical perspective on plant shape modeling.Proc. International Conference on Computing, Communications and Control Technologies, Vol. VI (2004), 265–272.
Reference: [27] Gielis, J.: Wiskundige supervormen bij bamboes.Newsletter Belgian Bamboo Society 13 (1996), 20–26.
Reference: [28] Gielis, J., Beirinckx, B., Bastiaens, E.: Superquadrics with rational and irrational symmetries.Proc. 8th ACM symposium on Solid Modeling and Applications (2003), 262–265.
Reference: [29] Gielis, J.: Variational superformula curves for 2D- and 3D graphic arts.Proc. World Multi-Conference on Systemics, Cybernetics and Informatics, Vol. V: Computer Science and Engineering (2004), 119–124.
Reference: [30] Haesen, S., Sebeković, A., Verstraelen, L.: Relations between intrinsic and extrinsic curvatures.Kragujevac J. Math. 25 (2003), 139–145. Zbl 1274.53024, MR 2120586
Reference: [31] Dillen, F., Haesen, S., Petrović-Torgasev, M., Verstraelen, L.: An inequality between intrinsic and extrinsic scalar curvature invariants for codimension 2 embeddings.J. Geom. Phys. 52 (2004), 101–112. Zbl 1083.53062, MR 2088970, 10.1016/j.geomphys.2004.02.003
Reference: [32] Haesen, S., Verstraelen, L.: Ideally embedded space-times.J. Math. Phys. 45 (2004), 1497–1510. Zbl 1068.53053, MR 2043839, 10.1063/1.1668333
Reference: [33] Lemaître, G.: Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactique.Annales Soc. Sc. Bruxelles 47 (1927), 49–59.
Reference: [34] O’Neill, B.: Semi-Riemannian geometry, with applications to relativity.Acad. Press, New York 1983. MR 0719023
Reference: [35] Helmholtz, H. von: Ueber die Tatsachen welche der Geometrie zu Grunde liegen.In Abhandlungen zur Philosophie und Geometrie, Junghaus, Cuxhausen 1987.
Reference: [36] Riemann, B.: Ueber die Hypothesen welche der Geometrie zu Grunde liegen.In Gaussche Flächentheorie, Riemannsche Räume und Minkowski-Welt, Teubner, Leipzig 1984.
.

Files

Files Size Format View
PokrokyMFA_52-2007-2_5.pdf 1.195Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo