Previous |  Up |  Next

Article

Title: Latinské čtverce a genetický kód (Czech)
Title: Latin squares and the genetic code (English)
Author: Katrnoška, František
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 52
Issue: 3
Year: 2007
Pages: 177-187
.
Category: math
.
Keyword: generalized $R$-Latin square
Keyword: finite projective plane
MSC: 05B15
idZBL: Zbl 1265.05078
.
Date available: 2010-12-11T22:13:38Z
Last updated: 2015-11-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141355
.
Reference: [1] Albert, A. A.: Quasigroups I, II.Trans. Amer. Math. Soc. 54 (1943), 507–519; 55 (1944), 401–419. MR 0009962, 10.1090/S0002-9947-1943-0009962-7
Reference: [2] Belousov, V. D.: Osnovy teorii kvazigrup i lup.Izd. Nauka, Moskva 1967. MR 0218483
Reference: [3] Bosák, J.: Latinské štvorce.Škola mladých matematiků, sv. 38, Praha 1976.
Reference: [4] Bose, R. C.: On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares.Sankya 3 (1938), 323–338.
Reference: [5] Bose, R. C., Parker, E. T., Shrikhande, S. S.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture.Canad. Math. J. 12 (1960), 189–203. Zbl 0093.31905, MR 0122729, 10.4153/CJM-1960-016-5
Reference: [6] Bruck, R. H., Ryser, H. J.: On the non-existence of certain finite projective planes.Canad. Math. J. 1 (1949), 88–93. MR 0027520, 10.4153/CJM-1949-009-2
Reference: [7] Dembowski, P.: Finite geometries.Springer, Berlin 1968. Zbl 0159.50001, MR 0233275
Reference: [8] Dénes, J., Keedwell, A. D.: Latin squares and their applications.Akadémiai Kiadó, Budapest, Academic Press, London 1974. MR 0351850
Reference: [9] Deng, Bo: Why is the number of DNA bases 4?.Bull. Math. Biol. 68 (2006), 727–733. MR 2224788, 10.1007/s11538-005-9019-y
Reference: [10] Euler, L.: Recherches sur une nouvelle espèce de quarrés magiques.Verh. Zeeuwsch. Genootsch. Wetensch. Vlissengen 9 (1782), 85–239.
Reference: [11] Fisher, R. A.: The design of experiments.(8th edition). Olivier et Boyd, Edinburgh 1966.
Reference: [12] Hall, M.: Combinatorial theory.Blaisdell Publ. Comp., Toronto, London 1967. Zbl 0196.02401, MR 0224481
Reference: [13] Harary, F.: Graph theory.Addison-Wesley, Reading Mass 1969. Zbl 0196.27202, MR 0256911
Reference: [14] Herzberg, A. L., Murty, M. R.: Sudoku squares and chromatic polynomials.Notices Amer. Math. Soc. 54 (2007), 708–717. Zbl 1177.05022, MR 2327972
Reference: [15] Kárná, L.: Genetic code from the point of view of code theory.Proc. ICPM ’05, Liberec 2005, 267–273.
Reference: [16] Katrnoška, F.: Logics that are generated by idempotents.Lobachevskii J. Math. 15 (2004), 11–19. Zbl 1060.15018, MR 2120697
Reference: [17] Katrnoška, F.: On algebras of generalized $R$-Latin squares.Připraveno pro tisk.
Reference: [18] Katrnoška, F., Křížek, M.: Genetický kód a teorie monoidů aneb 50 let od objevu struktury DNA.PMFA 48 (2003), 207–222.
Reference: [19] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers: From number theory to geometry.Springer, New York 2001. Zbl 1010.11002, MR 1866957
Reference: [20] Lam, C. W. H.: The search for a finite projective plane of order 10.Amer. Math. Monthly 98 (1991), 305–318. Zbl 0744.51011, MR 1103185, 10.2307/2323798
Reference: [21] Laugwitz, D.: Eulerovy čtverce.PMFA 25 (1980), 69–79.
Reference: [22] Laywine, Ch., Mullen, G. L.: Discrete mathematics using Latin squares.Wiley Interscience 1998. Zbl 0957.05002, MR 1644242
Reference: [23] Mann, H. B.: The construction of orthogonal Latin squares.Ann. Math. Stat. 13 (1942), 418–423. Zbl 0060.02706, MR 0007736, 10.1214/aoms/1177731539
Reference: [24] Markus, M.: Introduction to modern algebra.Marcel Dekker, New York, Basel 1978. MR 0492268
Reference: [25] Matoušek, J., Nešetřil, J.: Kapitoly z diskrétní matematiky.Karolinum, Praha 2000.
Reference: [26] Moufang, R.: Zur Struktur von alternativ Körpern.Math. Ann. 110 (1935), 416–430. MR 1512948, 10.1007/BF01448037
Reference: [27] Ozanam, J.: Récréations mathématiques et physiques 1723.(angl. vyd. 1814, Hutton).
Reference: [28] Rybnikov, K. A.: Vveděnije v kombinatornyj analiz.Izd. Moskovskogo Univ., Moskva 1985. MR 0812275
Reference: [29] Tarry, G.: Le problème des 36 officiers.C. R. Assoc. Fr. Av. Sci. 1 (1900), 122–123; 2 (1901), 170–203.
Reference: [30] Thompson, J. S., Thompson, M. W.: Genetics in medicine.W. B. Saunders Company, Philadelphia 2001.
Reference: [31] Veblen, O.: A system of axioms for geometry.Trans. Amer. Math. Soc. 5 (1904), 343–384. MR 1500678, 10.1090/S0002-9947-1904-1500678-X
Reference: [32] Watson, J. D.: Molekulární biologie genu.Academia, Praha 1982.
Reference: [33] Wilson, R. J.: Introduction to graph theory.Oliver and Boyd, Edinburgh 1972. Zbl 0249.05101, MR 0357175
.

Files

Files Size Format View
PokrokyMFA_52-2007-3_1.pdf 412.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo