Previous |  Up |  Next

Article

Title: Approximate maps, filter monad, and a representation of localic maps (English)
Author: Banaschewski, Bernhard
Author: Pultr, Aleš
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 4
Year: 2010
Pages: 285-298
Summary lang: English
.
Category: math
.
Summary: A covariant representation of the category of locales by approximate maps (mimicking a natural representation of continuous maps between spaces in which one approximates points by small open sets) is constructed. It is shown that it can be given a Kleisli shape, as a part of a more general Kleisli representation of meet preserving maps. Also, we present the spectrum adjunction in this approximation setting. (English)
Keyword: frames (locales)
Keyword: localic maps
Keyword: approximation
Keyword: Kleisli representation
MSC: 06D22
MSC: 18C20
idZBL: Zbl 1240.06038
idMR: MR2754066
.
Date available: 2010-12-14T14:59:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141382
.
Reference: [1] Banaschewski, B., Pultr, A.: Cauchy points of uniform and nearness frames.Quaestiones Math. 19 (1–2) (1996), 101–127. Zbl 0861.54023, MR 1390475, 10.1080/16073606.1996.9631828
Reference: [2] Banaschewski, B., Pultr, A.: A general view of approximation.Appl. Categ. Structures 14 (2006), 165–190. Zbl 1113.54013, MR 2247451, 10.1007/s10485-006-9013-z
Reference: [3] Carathéodory, C.: Über die Begrenzung einfach zusamenhängender Gebiete.Math. Ann. 73 (3) (1913), 323–370. MR 1511737, 10.1007/BF01456699
Reference: [4] Escardó, M. Hötzel: Injective spaces in the filter monad.Department of Computing, Edinburg University, preprint 1997.
Reference: [5] Grothendieck, A.: Éléments de géométrie algebrique. I. Le langage des schémas.no. 4, Inst. Hautes Études Sci. Publ. Math., 1960. Zbl 0118.36206, MR 0217083
Reference: [6] Hausdorff, F.: Grundzüge der Mengenlehre.Veit & Co., Leipzig, 1914. MR 0031025
Reference: [7] Johnstone, P. T.: Stone spaces.Cambridge Stud. Adv. Math. 3, 1982. Zbl 0499.54001, MR 0698074
Reference: [8] Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck.Mem. Amer. Math. Soc. 51 (309) (1984), 71 pp. Zbl 0541.18002, MR 0756176
Reference: [9] Kelley, J. L.: General Topology.D. Van Nostrand Company, Inc., Toronto–New York–London, 1955. Zbl 0066.16604, MR 0070144
Reference: [10] Lane, S. Mac: Categories for the Working Mathematician.Springer–Verlag, New York, 1971. MR 1712872
Reference: [11] Manes, E.: Algebraic Theories.Grad. Texts in Math. 26 (1976), 356 pp. Zbl 0353.18007, MR 0419557
Reference: [12] Picado, J., Pultr, A.: Sublocale sets and sublocale lattices.Arch. Math. (Brno) 42 (4) (2006), 409–418. Zbl 1164.06313, MR 2283021
Reference: [13] Picado, J., Pultr, A.: Locales treated mostly in a covariant way.vol. 41, Textos Mat. Ser. B, 2008. Zbl 1154.06007, MR 2459570
Reference: [14] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices.Proc. London Math. Soc. 324 (1972), 507–530. Zbl 0323.06011, MR 0300949
Reference: [15] Pultr, A.: Handbook of Algebra.vol. 3, ch. Frames, pp. 791–858, Elsevier, 2003. MR 2035108
.

Files

Files Size Format View
ArchMathRetro_046-2010-4_5.pdf 529.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo