Previous |  Up |  Next

Article

Title: Finite-time boundedness and stabilization of switched linear systems (English)
Author: Du, Haibo
Author: Lin, Xiangze
Author: Li, Shihua
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 5
Year: 2010
Pages: 870-889
Summary lang: English
.
Category: math
.
Summary: In this paper, finite-time boundedness and stabilization problems for a class of switched linear systems with time-varying exogenous disturbances are studied. Firstly, the concepts of finite-time stability and finite-time boundedness are extended to switched linear systems. Then, based on matrix inequalities, some sufficient conditions under which the switched linear systems are finite-time bounded and uniformly finite-time bounded are given. Moreover, to solve the finite-time stabilization problem, stabilizing controllers and a class of switching signals are designed. The main results are proven by using the multiple Lyapunov-like functions method, the single Lyapunov-like function method and the common Lyapunov-like function method, respectively. Finally, three examples are employed to verify the efficiency of the proposed methods. (English)
Keyword: switched linear systems
Keyword: finite-time boundedness
Keyword: multiple Lyapunov-like functions
Keyword: single Lyapunov-like function
Keyword: common Lyapunov-like function
MSC: 93A14
MSC: 93C10
MSC: 93D15
MSC: 93D21
idZBL: Zbl 1205.93076
idMR: MR2778923
.
Date available: 2010-12-20T15:41:27Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141397
.
Reference: [1] Amato, F., Ambrosino, R., Ariola, M., Cosentino, C.: Finite-time stability of linear time-varying systems with jumps.Automatica 45 (2009), 1354–1358. Zbl 1162.93375, MR 2531617, 10.1016/j.automatica.2008.12.016
Reference: [2] Amato, F., Ariola, M.: Finite-time control of discrete-time linear system.IEEE Trans. Automat. Control 50 (2005), 724–729. MR 2141582, 10.1109/TAC.2005.847042
Reference: [3] Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances.Automatica 37 (2001), 1459–1463. Zbl 0983.93060, 10.1016/S0005-1098(01)00087-5
Reference: [4] Amato, F., Merola, A., Cosentino, C.: Finite-time stability of linear time-varying systems: Analysis and controller design.IEEE Trans. Automat. Control 55 (2010), 1003–1008. MR 2654445, 10.1109/TAC.2010.2041680
Reference: [5] Amato, F., Merola, A., Cosentino, C.: Finite-time control of discrete-time linear systems: Analysis and design conditions.Automatica 46 (2010) 919–924. MR 2877166, 10.1016/j.automatica.2010.02.008
Reference: [6] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems.SIAM J. Control Optim. 38 (2000), 751–766. Zbl 0945.34039, MR 1756893, 10.1137/S0363012997321358
Reference: [7] Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.IEEE Trans. Automat. Control 43 (1998), 475–482. Zbl 0904.93036, MR 1617575, 10.1109/9.664150
Reference: [8] Cheng, D., Guo, Y.: Advances on switched systems.Control Theory Appl. 22 (2005), 954–960. Zbl 1112.93365
Reference: [9] Dorato, P.: Short time stability in linear time-varying systems.In: Proc. IRE Internat. Conv. Rec. Part 4, New York 1961, pp. 83–87.
Reference: [10] Engell, S., Kowalewski, S., Schulz, C., Strusberg, O.: Continuous-discrete interactions in chemical processing plants. Proc. IEEE 88 (2000), 1050–1068.
Reference: [11] Gayek, J. E.: A survey of techniques for approximating reachable and controllable sets.In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp.  1724–1729.
Reference: [12] Hespanha, J. P., Liberzon, D., Morse, A. S.: Stability of switched systems with average dwell time.In: Proc. 38th Conference on Decision and Control, Phoenix 1999, pp. 2655–2660.
Reference: [13] Kamenkov, G.: On stability of motion over a finite interval of time. J. Applied Math. and Mechanics 17 (1953), 529–540. MR 0061237
Reference: [14] Liberzon, D.: Switching in Systems and Control.Brikhauser, Boston 2003. Zbl 1036.93001, MR 1987806
Reference: [15] Lin, H., Antsaklis, P. J.: Hybrid state feedback stabilization with $l_2$ performance for discrete-time switched linear systems.Internat. J. Control 81 (2008), 1114–1124. Zbl 1152.93472, MR 2431162, 10.1080/00207170701654354
Reference: [16] Lin, H., Antsaklis, P. J.: Stability and stabilizability of switched linear systems: A survey of recent results.IEEE Trans. Automat. Control 54 (2009), 308–322. MR 2491959, 10.1109/TAC.2008.2012009
Reference: [17] Li, S., Tian, Y.: Finite-time stability of cascaded time-varying systems.Internat. J. Control 80 (2007), 646-657. Zbl 1117.93004, MR 2304124, 10.1080/00207170601148291
Reference: [18] Morse, A. S.: Basic problems in stability and design of switched systems.IEEE Control Systems Magazine 19 (1999), 59–70. 10.1109/37.793443
Reference: [19] Orlov, Y.: Finite time stability and robust control synthesis of uncertain switched systems.SIAM J. Control Optim. 43 (2005), 1253–1271. Zbl 1085.93021, MR 2124272, 10.1137/S0363012903425593
Reference: [20] Pepyne, D., Cassandaras, C.: Optimal control of hybrid systems in manufacturing.Proc. IEEE 88 (2000), 1108–1123.
Reference: [21] Pettersson, S.: Synthesis of switched linear systems.In: Proc. 42nd Conference on Decision and Control, Maui 2003, pp. 5283–5288.
Reference: [22] Sun, Z.: Stabilizing switching design for switched linear systems: A state-feedback path-wise switching approach.Automatica 45 (2009), 1708–1714. Zbl 1184.93077, MR 2879485, 10.1016/j.automatica.2009.03.001
Reference: [23] Sun, Z., Ge, S. S.: Analysis and synthesis of switched linear control systems.Automatica 41 (2005), 181–195. Zbl 1074.93025, MR 2157653, 10.1016/j.automatica.2004.09.015
Reference: [24] Sun, X., Zhao, J., Hill, D. J.: Stability and $L_2$ gain analysis for switched delay systems: A delay-dependent method.Automatica 42 (2006), 1769–1774. Zbl 1114.93086, MR 2249722, 10.1016/j.automatica.2006.05.007
Reference: [25] Tanner, H. G., Jadbabaie, A., Pappas, G. J.: Flocking in fixed and switching networks.IEEE Trans. Automat. Control 52 (2007), 863–868. MR 2324246, 10.1109/TAC.2007.895948
Reference: [26] Safonov, M. G., Goh, K. G., Ly, J.: Control system synthesis via bilinear matrix inequalities.In: Proc. American Control Conference, Baltimore 1994, pp. 45–49.
Reference: [27] Antwerp, J. G. Van, Braat, R. D.: A tutorial on linear and bilinear matrix inequalities.J. Process Control 10 (2000), 363–385. 10.1016/S0959-1524(99)00056-6
Reference: [28] Varaiya, P.: Smart cars on smart roads: Problems of control.IEEE Trans. Automat. Control 38 (1993), 195–207. MR 1206801, 10.1109/9.250509
Reference: [29] Wang, J., Zhang, G., Li, H.: Adaptive control of uncertain nonholonomic systems in finite time.Kybernetika 45 (2009), 809–824. Zbl 1190.93086, MR 2599114
Reference: [30] Weiss, L., Infante, E. F.: Finite time stability under perturbing forces and on product spaces.IEEE Trans. Automat. Control 12 (1967), 54–59. Zbl 0168.33903, MR 0209589, 10.1109/TAC.1967.1098483
Reference: [31] Xu, X., Zhai, G.: Practical stability and stabilization of hybrid and switched systems.IEEE Trans. Automat. Control 50 (2005), 1897–1903. MR 2182748, 10.1109/TAC.2005.858680
Reference: [32] Yang, H., Cocquempot, V., Jiang, B.: On stabilization of switched nonlinear systems with unstable modes.Systems Control Lett. 58 (2009), 703–708. Zbl 1181.93074, MR 2584005, 10.1016/j.sysconle.2009.06.007
Reference: [33] Zhao, J., Hill, D. J.: On stability, $L_2$-gain and $H_{\infty }$ control for switched systems.Automatica 44 (2008), 1220–1232. MR 2531787, 10.1016/j.automatica.2007.10.011
Reference: [34] Zhao, S., Sun, J., Liu, L.: Finite-time stability of linear time-varying singular systems with impulsive effects.Internat. J. Control 81 (2008), 1824–1829. Zbl 1148.93345, MR 2462577, 10.1080/00207170801898893
Reference: [35] Zhu, L., Shen, Y., Li, C.: Finite-time control of discrete-time systems with time-varying exogenous disturbance.Communications in Nonlinear Science and Numerical Simulation 14 (2009), 361–370. Zbl 1221.93240, MR 2458814, 10.1016/j.cnsns.2007.09.013
.

Files

Files Size Format View
Kybernetika_46-2010-5_5.pdf 484.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo