Previous |  Up |  Next

Article

Title: Optimal boundary control for hyperdiffusion equation (English)
Author: Heidari, Hanif
Author: Malek, Alaeddin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 5
Year: 2010
Pages: 907-925
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain to obtain desired state with minimum energy. Proposed method has high flexibility so that decision makers are able to trace optimal control in a prescribed subinterval. The implementation of the theory is presented and the effectiveness of the boundary control is investigated by some numerical examples. (English)
Keyword: hyperdiffusion equation
Keyword: optimal boundary control
Keyword: swimming at microscale
MSC: 35B37
MSC: 35K35
MSC: 49J20
idZBL: Zbl 1206.35138
idMR: MR2778921
.
Date available: 2010-12-20T16:07:04Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141399
.
Reference: [1] Boyd, S., Vandenberghe, L.: Convex Optimization.Cambridge University Press 2004. Zbl 1058.90049, MR 2061575
Reference: [2] Brennen, C., Winet, H.: Fluid mechanics of propulsion by cilia and flagella.Ann. Rev. Fluid Mech. 9 (1977), 339–398. Zbl 0431.76100, 10.1146/annurev.fl.09.010177.002011
Reference: [3] Burk, F.: Lebesgue Measure and Integration: An Itroduction.John Wiley $\&$ Sons, 1998. MR 1478419
Reference: [4] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods: Fundamentals in Single Domains.Springer-Verlag, 2006. Zbl 1093.76002, MR 2223552
Reference: [5] Dimitriu, G.: Numerical approximation of the optimal inputs for an identification problem.Internat. J. Comput. Math. 70 (1998), 197–209. Zbl 0915.65069, MR 1712493, 10.1080/00207169808804746
Reference: [6] Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., Bibette, J.: Microscopic artificial swimmers.Nature 437 (2005), 862–865. 10.1038/nature04090
Reference: [7] Fahroo, F.: Optimal placement of controls for a one-dimensional active noise control problem.Kybernetika 34 (1998), 655–665. MR 1695369
Reference: [8] Farahi, M. H., Rubio, J. E., Wilson, D. A.: The optimal control of the linear wave equation.Internat. J. Control 63 (1996), 833–848. Zbl 0841.49001, MR 1652573, 10.1080/00207179608921871
Reference: [9] Heidari, H., Malek, A.: Null boundary controllability for hyperdiffusion equation.Internat. J. Appl. Math. 22 (2009), 615–626. Zbl 1177.93018, MR 2537040
Reference: [10] Ji, G., Martin, C.: Optimal boundary control of the heat equation with target function at terminal time.Appl. Math. Comput. 127 (2002), 335–345. Zbl 1040.49037, MR 1883857, 10.1016/S0096-3003(01)00011-X
Reference: [11] Kim, Y. W., Netz, R. R.: Pumping fluids with periodically beating grafted elastic filaments.Phys. Rev. Lett. 96 (2006), 158101. 10.1103/PhysRevLett.96.158101
Reference: [12] Lauga, E.: Floppy swimming: Viscous locomotion of actuated elastica.Phys. Rev. E. 75 (2007), 041916. MR 2358588, 10.1103/PhysRevE.75.041916
Reference: [13] Lauga, E., Powers, T. R.: The hydrodynamics of swimming microorganisms.Rep. Prog. Phys. 72 (2009), 096601. MR 2539632, 10.1088/0034-4885/72/9/096601
Reference: [14] Lions, J. L., Magenes, E.: Non-homogeneous Boundary Value Problem and Applications.Springer-Verlag, 1972.
Reference: [15] Machin, K. E.: The control and synchronization of flagellar movement.Proc. Roy. Soc. B. 158 (1963), 88–104. 10.1098/rspb.1963.0036
Reference: [16] Machin, K. E.: Wave propagation along flagella.J. Exp. Biol. 35 (1985), 796–806.
Reference: [17] Mordukhovich, B. S., Raymond, J. P.: Optimal boundary control of hyperbolic equations with pointwise state constraints.Nonlinear Analysis 63 (2005), 823–830. Zbl 1153.49315, MR 2188155, 10.1016/j.na.2004.12.017
Reference: [18] Park, H. M., Lee, M. W., Jang, Y. D.: An efficient computational method of boundary optimal control problems for the burgers equation.Comput. Meth. Appl. Mech. Engrg. 166 (1998), 289–308. Zbl 0949.76024, MR 1659187, 10.1016/S0045-7825(98)00092-9
Reference: [19] Purcell, E. M.: Life at low Reynolds number.Amer. J. Phys. 45 (1977), 3–11. 10.1119/1.10903
Reference: [20] Reju, S. A., Evans, D. J.: Computational results of the optimal control of the diffusion equation with the extended conjugate gradient algorithm.Internat. J. Comput Math. 75 (2000), 247–258. Zbl 0961.65064, MR 1787282, 10.1080/00207160008804980
Reference: [21] Rektorys, K.: Variational Methods in Mathematics, Sciences and Engineering.D. Reidel Publishing Company, 1977. MR 0487653
Reference: [22] Sakthivel, K., Balachandran, K., Sowrirajan, R., Kim, J-H.: On exact null controllability of black scholes equation.Kybernetika 44 (2008), 685–704. Zbl 1177.93021, MR 2479312
Reference: [23] Wiggins, C. H., Riveline, D., Ott, A., Goldstein, R. E.: Trapping and wiggling: Elastohydrodynamics of driven microfilaments.Biophys. J. 74 (1998), 1043–1060. 10.1016/S0006-3495(98)74029-9
Reference: [24] Williams, P.: A Gauss–Lobatto quadrature method for solving optimal control problems.ANZIAM 47 (2006), C101–C115. MR 2242566
Reference: [25] Yu, T. S., Lauga, E., Hosoi, A. E.: A experimental investigations of elastic tail propulsion at low Reynolds number.Phys. Fluids 18 (2006), 091701. 10.1063/1.2349585
.

Files

Files Size Format View
Kybernetika_46-2010-5_7.pdf 647.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo