Previous |  Up |  Next

Article

Title: Isolated points and redundancy (English)
Author: Alirio J. Peña, P.
Author: Vielma, Jorge
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 1
Year: 2011
Pages: 145-152
Summary lang: English
.
Category: math
.
Summary: We describe the isolated points of an arbitrary topological space $(X,\tau)$. If the $\tau$-specialization pre-order on $X$ has enough maximal elements, then a point $x\in X$ is an isolated point in $(X,\tau)$ if and only if $x$ is both an isolated point in the subspaces of $\tau$-kerneled points of $X$ and in the $\tau$-closure of $\{x\}$ (a special case of this result is proved in Mehrvarz A.A., Samei K., {\it On commutative Gelfand rings\/}, J. Sci. Islam. Repub. Iran {\bf 10} (1999), no. 3, 193--196). This result is applied to an arbitrary subspace of the prime spectrum $\operatorname{Spec}(R)$ of a (commutative with nonzero identity) ring $R$, and in particular, to the space $\operatorname{Spec}(R)$ and the maximal and minimal spectrum of $R$. Dually, a prime ideal $P$ of $R$ is an isolated point in its Zariski-kernel if and only if $P$ is a minimal prime ideal. Finally, some aspects about the redundancy of (maximal) prime ideals in the (Jacobson) prime radical of a ring are considered, and we characterize when $\operatorname{Spec} (R)$ is a scattered space. (English)
Keyword: maximal (minimal) spectrum of a ring
Keyword: scattered space
Keyword: isolated point
Keyword: prime radical
Keyword: Jacobson radical
MSC: 13C05
MSC: 54F65
idZBL: Zbl 1240.54106
idMR: MR2828365
.
Date available: 2011-03-08T17:44:19Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141434
.
Reference: [1] Heinzer W., Olberding B.: Unique irredundant intersections of completely irreducible ideals.J. Algebra 287 (2005), 432–448. Zbl 1104.13001, MR 2134153, 10.1016/j.jalgebra.2005.03.001
Reference: [2] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110–130. Zbl 0147.29105, MR 0194880, 10.1090/S0002-9947-1965-0194880-9
Reference: [3] Hungerford T.W.: Algebra.Reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer, New York-Berlin, 1980. Zbl 0442.00002, MR 0600654, 10.1007/978-1-4612-6101-8
Reference: [4] Mehrvarz A.A., Samei K.: On commutative Gelfand rings.J. Sci. Islam. Repub. Iran 10 (1999), no. 3, 193–196. Zbl 1061.13500, MR 1794709
Reference: [5] Peña A.J., Ruza L.M., Vielma J.: Separation axioms and the prime spectrum of commutative semirings.Notas de Matemática, Vol. 5 (2), No. 284, 2009, pp. 66–82; http://www.saber.ula.ve/notasdematematica/.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-1_11.pdf 218.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo