Previous |  Up |  Next


Bonferroni inequality; segmentation statistic; Z-function
We introduce the function $Z(x; \xi, \nu) := \int_{-\infty}^x \varphi(t-\xi)\cdot \Phi(\nu t)\ \text{d}t$, where $\varphi$ and $\Phi$ are the pdf and cdf of $N(0,1)$, respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables of a certain type. We show three applications of the method – (a) calculation of critical values of the segmentation statistic, (b) evaluation of its efficiency and (c) evaluation of an estimator of a point of change in the mean of time series.
[1] Antoch, J., Hušková, M.: Permutation tests in change point analysis. Statist. Probab. Lett. 53 (2001), 37–46. DOI 10.1016/S0167-7152(01)00009-8 | MR 1843339 | Zbl 0980.62033
[2] Antoch, J., Hušková, M., Jarušková, D.: Off-line statistical process control. In: Multivariate Total Quality Control, Physica-Verlag, Heidelberg 2002, 1–86. MR 1886416 | Zbl 1039.62110
[3] Antoch, J., Hušková, M., Prášková, Z.: Effect of dependence on statistics for determination of change. J. Statist. Plan. Infer. 60 (1997), 291–310. DOI 10.1016/S0378-3758(96)00138-3 | MR 1456633
[4] Antoch, J., Jarušková, D.: Testing a homogeneity of stochastic processes. Kybernetika 43 (2007), 415–430. MR 2377920 | Zbl 1135.62066
[5] Černý, M., Hladík, M.: The regression tolerance quotient in data analysis. In: Proc. 28th Internat. Conf. on Mathematical Methods in Economics 2010 (M. Houda and J. Friebelová, eds.), University of South Bohemia, České Budějovice 1 (2010), 98–104.
[6] Chen, X.: Inference in a simple change-point problem. Scientia Sinica 31 (1988), 654–667. MR 0964890
[7] HASH(0x2428320). K. Dohmen: Improved inclusion-exclusion identities and Bonferroni inequalities with applications to reliability analysis of coherent systems.
[8] HASH(0x24285c0). Internet:
[9] Dohmen, K., Tittman, P.: Inequalities of Bonferroni-Galambos type with applications to the Tutte polynomial and the chromatic polynomial. J. Inequal. in Pure and Appl. Math. 5 (2004), art. 64. MR 2084873
[10] Gombay, E., Horváth, L.: Approximations for the time of change and the power function in change-point models. J. Statist. Plan. Infer. 52 (1996), 43–66. MR 1391683
[11] Galambos, J.: Bonferroni inequalities. Ann. Prob. 5 (1997), 577–581. MR 0448478
[12] Galambos, J., Simonelli, I.: Bonferroni-type Inequalities with Applications. Springer Verlag, Berlin 1996. MR 1402242 | Zbl 0869.60014
[13] Hladík, M., Černý, M.: New approach to interval linear regression. In: 24th Mini-EURO Conference On Continuous Optimization and Information-Based Technologies in The Financial Sector MEC EurOPT 2010, Selected Papers (R. Kasımbeyli et al., eds.), Technika, Vilnius (2010), 167–171.
[14] Sen, A., Srivastava, M.: On tests for detecting change in mean. Ann. Statist. 3 (1975), 98–108. DOI 10.1214/aos/1176343001 | MR 0362649 | Zbl 0399.62033
[15] Worsley, K.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42. DOI 10.1080/00401706.1983.10487817 | MR 0694210 | Zbl 0508.62061
Partner of
EuDML logo