[2] Bruns, G., Harding, J.:
Algebraic aspects of orthomodular lattices. In: Current Research in Operational Quantum Logic (B. Coecke, D. Moore and A. Wilce, eds.), Kluwer Academic Publishers 2000, pp. 37–65.
MR 1907155 |
Zbl 0955.06003
[3] Burris, S., Sankappanavar, H. P.:
A Course in Universal Algebra. Springer-Verlag, New York 1981.
MR 0648287 |
Zbl 0478.08001
[4] Chiara, M. L. Dalla, Giuntini, R., Greechie, R.:
Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London 2004.
MR 2069854
[5] Dorfer, G., Dvurečenskij, A., Länger, H. M.:
Symmetric difference in orthomodular lattices. Math. Slovaca 46 (1996), 435–444.
MR 1451034
[7] Dvurečenskij, A., Pulmannová, S.:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, and Ister Science, Bratislava 2000.
MR 1861369
[8] Godowski, R., Greechie, R. J.:
Some equations related to states on orthomodular lattices. Demonstratio Math. XVII (1984), 1, 241–250.
MR 0760356 |
Zbl 0553.06013
[10] Engesser, K., Gabbay, D.M., ed., D. Lehmann:
Handbook of Quantum Logic and Quantum Structures. Elsevier 2007.
MR 2408886
[11] Havlík, F.: Ortokomplementární diferenční svazy (in Czech). (Mgr. Thesis, Department of Logic, Faculty of Arts, Charles University in Prague 2007).
[16] Matoušek, M., Pták, P.:
Symmetric difference on orthomodular lattices and $Z_2$-valued states. Comment. Math. Univ. Carolin. 50 (2009), 4, 535–547.
MR 2583131 |
Zbl 1212.06021
[19] Pták, P., Pulmannová, S.:
Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London 1991.
MR 1176314