Previous |  Up |  Next

Article

Keywords:
orthomodular lattice; quantum logic; symmetric difference; Gödel's coding; Boolean algebra; free algebra
Summary:
The algebraic theory of quantum logics overlaps in places with certain areas of cybernetics, notably with the field of artificial intelligence (see, e. g., [19, 20]). Recently an effort has been exercised to advance with logics that possess a symmetric difference ([13, 14]) - with so called orthocomplemented difference lattices (ODLs). This paper further contributes to this effort. In [13] the author constructs an ODL that is not set-representable. This example is quite elaborate. A main result of this paper somewhat economizes on this construction: There is an ODL with 3 generators that is not set-representable (and so the free ODL with 3 generators cannot be set-representable). The result is based on a specific technique of embedding orthomodular lattices into ODLs. The ODLs with 2 generators are always set-representable as we show by characterizing the free ODL with 2 generators - this ODL is ${\rm MO}_3 \times 2^4$.
References:
[1] Beran, L.: Orthomodular Lattices, Algebraic Approach. D. Reidel, Dordrecht, 1985. MR 0784029 | Zbl 0558.06008
[2] Bruns, G., Harding, J.: Algebraic aspects of orthomodular lattices. In: Current Research in Operational Quantum Logic (B. Coecke, D. Moore and A. Wilce, eds.), Kluwer Academic Publishers 2000, pp. 37–65. MR 1907155 | Zbl 0955.06003
[3] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, New York 1981. MR 0648287 | Zbl 0478.08001
[4] Chiara, M. L. Dalla, Giuntini, R., Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London 2004. MR 2069854
[5] Dorfer, G., Dvurečenskij, A., Länger, H. M.: Symmetric difference in orthomodular lattices. Math. Slovaca 46 (1996), 435–444. MR 1451034
[6] Dorfer, G.: Non-commutative symmetric differences in orthomodular lattices. Internat. J. Theoret. Phys. 44 (2005), 885–896. DOI 10.1007/s10773-005-7066-7 | MR 2199505
[7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, and Ister Science, Bratislava 2000. MR 1861369
[8] Godowski, R., Greechie, R. J.: Some equations related to states on orthomodular lattices. Demonstratio Math. XVII (1984), 1, 241–250. MR 0760356 | Zbl 0553.06013
[9] Greechie, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory 10 (1971), 119–132. DOI 10.1016/0097-3165(71)90015-X | MR 0274355 | Zbl 0219.06007
[10] Engesser, K., Gabbay, D.M., ed., D. Lehmann: Handbook of Quantum Logic and Quantum Structures. Elsevier 2007. MR 2408886
[11] Havlík, F.: Ortokomplementární diferenční svazy (in Czech). (Mgr. Thesis, Department of Logic, Faculty of Arts, Charles University in Prague 2007).
[12] Kalmbach, G.: Orthomodular Lattices. Academic Press, London 1983. MR 0716496 | Zbl 0528.06012
[13] Matoušek, M.: Orthocomplemented lattices with a symmetric difference. Algebra Universalis 60 (2009), 185–215. DOI 10.1007/s00012-009-2105-5 | MR 2491422 | Zbl 1186.06004
[14] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1–21. DOI 10.1007/s11083-008-9102-8 | MR 2487165 | Zbl 1201.06006
[15] Matoušek, M., Pták, P.: On identities in orthocomplemented difference lattices. Math. Slovaca 60 (2010), 5, 583–590. DOI 10.2478/s12175-010-0033-7 | MR 2728524 | Zbl 1249.06025
[16] Matoušek, M., Pták, P.: Symmetric difference on orthomodular lattices and $Z_2$-valued states. Comment. Math. Univ. Carolin. 50 (2009), 4, 535–547. MR 2583131 | Zbl 1212.06021
[17] Navara, M., Pták, P.: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105–111. DOI 10.1016/0022-4049(89)90108-4 | MR 1014608
[18] Park, E., Kim, M. M., Chung, J. Y.: A note on symmetric differences of orthomodular lattices. Commun. Korean Math. Soc. 18 (2003), 2, 207–214. DOI 10.4134/CKMS.2003.18.2.207 | MR 1986740 | Zbl 1101.06301
[19] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London 1991. MR 1176314
[20] Watanabe, S.: Modified concepts of logic, probability and integration based on generalized continuous characteristic function. Inform. and Control 2 (1969), 1–21. DOI 10.1016/S0019-9958(69)90581-6 | MR 0267964
Partner of
EuDML logo