Previous |  Up |  Next

Article

Title: Associative $n$-dimensional copulas (English)
Author: Stupňanová, Andrea
Author: Kolesárová, Anna
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 1
Year: 2011
Pages: 93-99
Summary lang: English
.
Category: math
.
Summary: The associativity of $n$-dimensional copulas in the sense of Post is studied. These copulas are shown to be just $n$-ary extensions of associative 2-dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia. (English)
Keyword: Archimedean copula
Keyword: associativity in the sense of Post
Keyword: $n$-dimensional copula
MSC: 03E72
idZBL: Zbl 1225.03071
idMR: MR2807866
.
Date available: 2011-04-12T13:06:12Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141480
.
Reference: [1] Couceiro, M.: On two generalizations of associativity. In: Abstracts of FSTA 2010 (E. P. Klement et. al., eds.), Liptovský Ján 2010, p. 47.
Reference: [2] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms.Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 5 (1997), 411–427. MR 1471619, 10.1142/S0218488597000312
Reference: [3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions.Cambridge University Press, Cambridge 2009. Zbl 1196.00002, MR 2538324
Reference: [4] Joe, H.: Multivariable Models and Dependence Concepts. Chapman & Hall, London 1997. MR 1462613
Reference: [5] Klement, E.-P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000. Zbl 1010.03046, MR 1790096
Reference: [6] Ling, C. H.: Representation of associative functions.Publicationes Mathematicae Debrecen 12 (1965), 189–212. MR 0190575
Reference: [7] McNeil, A.-J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $L_1$-norm symmetric distributions.Annals Statist. 37 (2009), 3059–3097. MR 2541455, 10.1214/07-AOS556
Reference: [8] Mesiar, R., Sarkoci, P.: Open problems posed at the 10th International Conference on Fuzzy Set Theory and Appl.(FSTA 2010), Liptovský Ján. Kybernetika 46 (2010), 585–598. MR 2722089
Reference: [9] Mesiar, R., Sempi, C.: Ordinal sums and idempotents of copulas.Aequationes Math. 79 (2010), 1–2, 39–52. Zbl 1205.62063, MR 2640277, 10.1007/s00010-010-0013-6
Reference: [10] Moynihan, R.: Infinite $\tau _T$ products of distribution functions.J. Austral. Math. Soc. Ser. A 26 (1978), 227–240. MR 0511607, 10.1017/S1446788700011721
Reference: [11] Nelsen, R.-B.: An Introduction to Copulas.Second edition. Springer Science and Business Media, New York 2006. Zbl 1152.62030, MR 2197664
Reference: [12] Post, E.-L.: Polyadic groups.Trans. Amer. Math. Soc. 48 (1940), 208–350. Zbl 0025.01201, MR 0002894, 10.1090/S0002-9947-1940-0002894-7
Reference: [13] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. MR 0125600
.

Files

Files Size Format View
Kybernetika_47-2011-1_7.pdf 217.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo