| Title: | Associative $n$-dimensional copulas (English) | 
| Author: | Stupňanová, Andrea | 
| Author: | Kolesárová, Anna | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 47 | 
| Issue: | 1 | 
| Year: | 2011 | 
| Pages: | 93-99 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The associativity of $n$-dimensional copulas in the sense of Post is studied. These copulas are shown to be just $n$-ary extensions of associative 2-dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia. (English) | 
| Keyword: | Archimedean copula | 
| Keyword: | associativity in the sense of Post | 
| Keyword: | $n$-dimensional copula | 
| MSC: | 03E72 | 
| idZBL: | Zbl 1225.03071 | 
| idMR: | MR2807866 | 
| . | 
| Date available: | 2011-04-12T13:06:12Z | 
| Last updated: | 2013-09-22 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/141480 | 
| . | 
| Reference: | [1] Couceiro, M.: On two generalizations of associativity. In: Abstracts of FSTA 2010 (E. P. Klement et. al., eds.), Liptovský Ján 2010, p. 47. | 
| Reference: | [2] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms.Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 5 (1997), 411–427. MR 1471619, 10.1142/S0218488597000312 | 
| Reference: | [3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions.Cambridge University Press, Cambridge 2009. Zbl 1196.00002, MR 2538324 | 
| Reference: | [4] Joe, H.: Multivariable Models and Dependence Concepts. Chapman & Hall, London 1997. MR 1462613 | 
| Reference: | [5] Klement, E.-P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000. Zbl 1010.03046, MR 1790096 | 
| Reference: | [6] Ling, C. H.: Representation of associative functions.Publicationes Mathematicae Debrecen 12 (1965), 189–212. MR 0190575 | 
| Reference: | [7] McNeil, A.-J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $L_1$-norm symmetric distributions.Annals Statist. 37 (2009), 3059–3097. MR 2541455, 10.1214/07-AOS556 | 
| Reference: | [8] Mesiar, R., Sarkoci, P.: Open problems posed at the 10th International Conference on Fuzzy Set Theory and Appl.(FSTA 2010), Liptovský Ján. Kybernetika 46 (2010), 585–598. MR 2722089 | 
| Reference: | [9] Mesiar, R., Sempi, C.: Ordinal sums and idempotents of copulas.Aequationes Math. 79 (2010), 1–2, 39–52. Zbl 1205.62063, MR 2640277, 10.1007/s00010-010-0013-6 | 
| Reference: | [10] Moynihan, R.: Infinite $\tau _T$ products of distribution functions.J. Austral. Math. Soc. Ser. A 26 (1978), 227–240. MR 0511607, 10.1017/S1446788700011721 | 
| Reference: | [11] Nelsen, R.-B.: An Introduction to Copulas.Second edition. Springer Science and Business Media, New York 2006. Zbl 1152.62030, MR 2197664 | 
| Reference: | [12] Post, E.-L.: Polyadic groups.Trans. Amer. Math. Soc. 48 (1940), 208–350. Zbl 0025.01201, MR 0002894, 10.1090/S0002-9947-1940-0002894-7 | 
| Reference: | [13] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8  (1959), 229–231. MR 0125600 | 
| . |