Title:
|
Cellularity and the index of narrowness in topological groups (English) |
Author:
|
Tkachenko, M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
309-315 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study relations between the cellularity and index of narrowness in topological groups and their $G_\delta$-modifications. We show, in particular, that the inequalities $\operatorname{in} ((H)_\tau)\le 2^{\tau\cdot \operatorname{in} (H)}$ and $c((H)_\tau)\leq 2^{2^{\tau\cdot \operatorname{in} (H)}}$ hold for every topological group $H$ and every cardinal $\tau\geq \omega $, where $(H)_\tau$ denotes the underlying group $H$ endowed with the $G_\tau$-modification of the original topology of $H$ and $\operatorname{in} (H)$ is the index of narrowness of the group $H$. Also, we find some bounds for the complexity of continuous real-valued functions $f$ on an arbitrary $\omega $-narrow group $G$ understood as the minimum cardinal $\tau\geq \omega $ such that there exists a continuous homomorphism $\pi\colon G\to H$ onto a topological group $H$ with $w(H)\leq \tau$ such that $\pi\prec f$. It is shown that this complexity is not greater than $2^{2^\omega }$ and, if $G$ is weakly Lindelöf (or $2^\omega $-steady), then it does not exceed $2^\omega $. (English) |
Keyword:
|
cellularity |
Keyword:
|
$G_\delta$-modification |
Keyword:
|
index of narrowness |
Keyword:
|
$\omega $-narrow |
Keyword:
|
weakly Lindelöf |
Keyword:
|
$\mathbb R$-factorizable |
Keyword:
|
complexity of functions |
MSC:
|
54A25 |
MSC:
|
54C30 |
MSC:
|
54H11 |
idZBL:
|
Zbl 1240.54109 |
idMR:
|
MR2849053 |
. |
Date available:
|
2011-05-17T08:44:26Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141492 |
. |
Reference:
|
[1] Arhangel'skii A.V., Tkachenko M.G.: Topological Groups and Related Structures.Atlantis Studies in Mathematics, Vol. I, Atlantis Press/World Scientific, Paris-Amsterdam, 2008. MR 2433295 |
Reference:
|
[2] Gartside P., Reznichenko E., Sipacheva O.: Mal'tsev and retral spaces.Topology Appl. 80 (1997), 115–129. Zbl 0888.54037, MR 1469472, 10.1016/S0166-8641(96)00166-6 |
Reference:
|
[3] Juhász I.: Cardinal Functions in Topology.Math. Centre Tracts 34, Amsterdam, 1971. MR 0340021 |
Reference:
|
[4] Pasynkov B.A.: On the relative cellularity of Lindelöf subspaces of topological groups.Topology Appl. 57 (1994), 249–258. Zbl 0803.54016, MR 1278026, 10.1016/0166-8641(94)90052-3 |
Reference:
|
[5] Shakhmatov D.B.: On condensations of universal topological algebras preserving continuity of operations and decreasing the weight.Vestnik Moskov. Univ. Ser. Mat. Mekh. 1984, no. 2, 42–45 (in Russian). MR 0741161 |
Reference:
|
[6] Tkachenko M.G.: Subgroups, quotient groups and products of $\mathbb R$-factorizable groups.Topology Proc. 16 (1991), 201–231. MR 1206464 |
Reference:
|
[7] Tkachenko M.G.: Introduction to topological groups.Topology Appl. 86 (1998), 179–231. Zbl 0955.54013, MR 1623960, 10.1016/S0166-8641(98)00051-0 |
Reference:
|
[8] V. V. Uspenskij, A topological group generated by a Lindelöf $\Sigma$-space has the Souslin property: Soviet Math. Dokl..26 (1982), 166–169. |
Reference:
|
[9] Uspenskij V.V.: On continuous images of Lindelöf topological groups.Soviet Math. Dokl. 32 (1985), 802–806. Zbl 0602.22003 |
. |