Previous |  Up |  Next

Article

Title: Tangent Dirac structures of higher order (English)
Author: Kouotchop Wamba, P. M.
Author: Ntyam, A.
Author: Wouafo Kamga, J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 1
Year: 2011
Pages: 17-22
Summary lang: English
.
Category: math
.
Summary: Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that: If $L$ is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order. (English)
Keyword: Dirac structure
Keyword: almost Dirac structure
Keyword: tangent functor of higher order
Keyword: natural transformations
MSC: 53C15
MSC: 53C75
MSC: 53D05
idZBL: Zbl 1240.53058
idMR: MR2813543
.
Date available: 2011-05-23T12:14:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141506
.
Reference: [1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$.C. R. Acad. Sci., Paris, Sér. II 309 (1989), 1509–1514. MR 1033091
Reference: [2] Courant, T.: Tangent Dirac Structures.J. Phys. A: Math. Gen. 23 (22) (1990), 5153–5168. Zbl 0715.58013, MR 1085863, 10.1088/0305-4470/23/22/010
Reference: [3] Courant, T.: Tangent Lie Algebroids.J. Phys. A: Math. Gen. 27 (13) (1994), 4527–4536. Zbl 0843.58044, MR 1294955, 10.1088/0305-4470/27/13/026
Reference: [4] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. J. 135 (1994), 1–41. Zbl 0813.53010, MR 1295815
Reference: [5] Grabowski, J., Urbanski, P.: Tangent lifts of Poisson and related structures.J. Phys. A: Math. Gen. 28 (23) (1995), 6743–6777. Zbl 0872.58028, MR 1381143, 10.1088/0305-4470/28/23/024
Reference: [6] Kolář, I., Michor, P., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [7] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$-velocities.Nagoya Math. J. 40 (1970), 13–31. MR 0279720
Reference: [8] Ntyam, A., Wouafo Kamga, J.: New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles.Ann. Pol. Math. 82 (3) (2003), 233–240. MR 2040808, 10.4064/ap82-3-4
.

Files

Files Size Format View
ArchMathRetro_047-2011-1_2.pdf 433.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo