Previous |  Up |  Next


Title: Stability Criteria of Linear Neutral Systems With Distributed Delays (English)
Author: Hu, Guang-Da
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 2
Year: 2011
Pages: 273-284
Summary lang: English
Category: math
Summary: In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded half circular region. If there are no characteristic roots on the imaginary axis, the number of unstable characteristic roots can be obtained. The results of this paper extend those in the literature. Numerical examples are given to illustrate the presented results. (English)
Keyword: neutral systems
Keyword: distributed delay
Keyword: stability criteria
MSC: 34K06
MSC: 65L07
idZBL: Zbl 1251.45006
idMR: MR2828577
Date available: 2011-06-06T14:59:12Z
Last updated: 2013-09-22
Stable URL:
Reference: [1] Brown, J. W., Churchill, R. V.: Complex Variables and Applications.McGraw–Hill Companies, Inc. and China Machine Press, Beijing 2004. MR 0730937
Reference: [2] Hale, J. K., Lunel, S. M. Verduyn: Introdution to Functional Equations.Springer–Verlag, New York 1993.
Reference: [3] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations.IMA J. Math. Control Inform. 19 (2002), 5–23. MR 1899001, 10.1093/imamci/19.1_and_2.5
Reference: [4] Hu, G. Da, Hu, G. Di: Stability of neutral-delay differential systems: boundary criteria.Appl. Math. Comput. 87 (1997), 247–259. Zbl 0913.34060, MR 1468302, 10.1016/S0096-3003(96)00300-1
Reference: [5] Hu, G. Da, Liu, M.: Stability criteria of linear neutral systems with multiple delays.IEEE Trans. Automat. Control 52 (2007), 720–724. MR 2310053, 10.1109/TAC.2007.894539
Reference: [6] Hu, G. Da, Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential equations.BIT 35 (1995), 504–515. Zbl 0841.65062, MR 1431345, 10.1007/BF01739823
Reference: [7] Kolmanovskii, V. B., Myshkis, A.: Applied Theory of Functional Differential Equations.Kluwer Academic Publishers, Dordrecht 1992. MR 1256486
Reference: [8] Lancaster, P.: The Theory of Matrices with Applications.Academic Press, Orlando 1985. MR 0245579
Reference: [9] Li, H., Zhong, S., Li, H.: Some new simple stability criteria of linear neutral systems with a single delay.J. Comput. Appl. Math. 200 (2007), 441–447. Zbl 1112.34058, MR 2276843, 10.1016/
Reference: [10] Michiels, W., Niculescu, S.: Stability and Stabilization of Time Delay Systems: An Eigenvalue Based Approach.SIAM, Philadelphia 2007. Zbl 1140.93026, MR 2384531
Reference: [11] Park, J. H.: A new delay-dependent stability criterion for neutral systems with multiple delays.J. Comput. Appl. Math. 136 (2001), 177–184. MR 1855889, 10.1016/S0377-0427(00)00583-5
Reference: [12] Vyhlídal, T., Zítek, P.: Modification of Mikhaylov criterion for nuetral time-delay systems.IEEE Trans. Automat. Control 54 (2009), 2430–2435. MR 2562848, 10.1109/TAC.2009.2029301


Files Size Format View
Kybernetika_47-2011-2_7.pdf 281.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo