Previous |  Up |  Next

Article

Title: Preservation of exponential stability for equations with several delays (English)
Author: Berezansky, Leonid
Author: Braverman, Elena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 2
Year: 2011
Pages: 135-144
Summary lang: English
.
Category: math
.
Summary: We consider preservation of exponential stability for the scalar nonoscillatory linear equation with several delays $$ \dot {x}(t) + \sum _{k=1}^m a_k(t) x(h_k(t)) = 0, \quad a_k(t) \geq 0 $$ under the addition of new terms and a delay perturbation. We assume that the original equation has a positive fundamental function; our method is based on Bohl-Perron type theorems. Explicit stability conditions are obtained. (English)
Keyword: exponential stability
Keyword: nonoscillation
Keyword: explicit stability condition
Keyword: perturbation
MSC: 34K06
MSC: 34K20
MSC: 34K27
MSC: 47N20
idZBL: Zbl 1224.34240
idMR: MR2856129
DOI: 10.21136/MB.2011.141576
.
Date available: 2011-06-07T11:27:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141576
.
Reference: [1] Györi, I., Hartung, F., Turi, J.: Preservation of stability in delay equations under delay perturbations.J. Math. Anal. Appl. 220 (1998), 290-312. MR 1613964, 10.1006/jmaa.1997.5883
Reference: [2] Berezansky, L., Braverman, E.: Preservation of the exponential stability under perturbations of linear delay impulsive differential equations.Z. Anal. Anwendungen 14 (1995), 157-174. Zbl 0821.34072, MR 1327497, 10.4171/ZAA/668
Reference: [3] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations.Applied Mathematical Sciences, Vol. 99, Springer, New York (1993). MR 1243878, 10.1007/978-1-4612-4342-7_3
Reference: [4] Azbelev, N. V., Berezansky, L., Rakhmatullina, L. F.: A linear functional-differential equation of evolution type.Differ. Equations 13 (1977), 1331-1339.
Reference: [5] Azbelev, N. V., Berezansky, L., Simonov, P. M., Chistyakov, A. V.: The stability of linear systems with aftereffect I.Differ. Equations 23 (1987), 493-500; Differ. Equations 27 (1991), 383-388; Differ. Equations 27 (1991), 1165-1172; Differ. Equations 29 (1993), 153-160. MR 1236101
Reference: [6] Azbelev, N. V., Simonov, P. M.: Stability of Differential Equations with Aftereffect.Stability and Control: Theory, Methods and Applications, Vol. 20. Taylor & Francis, London (2003). Zbl 1049.34090, MR 1965019
Reference: [7] Berezansky, L., Braverman, E.: Nonoscillation and exponential stability of delay differential equations with oscillating coefficients.J. Dyn. Control Syst. 15 (2009), 63-82. Zbl 1203.34103, MR 2475661, 10.1007/s10883-008-9058-4
Reference: [8] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications.Clarendon Press, Oxford University Press, New York (1991). MR 1168471
.

Files

Files Size Format View
MathBohem_136-2011-2_2.pdf 238.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo