Previous |  Up |  Next


non-interior continuation method; nonlinear complementarity; $P_0$-function; coercivity; quadratic convergence
In this paper, we consider a new non-interior continuation method for the solution of nonlinear complementarity problem with $P_0$-function ($P_0$-NCP). The proposed algorithm is based on a smoothing symmetric perturbed minimum function (SSPM-function), and one only needs to solve one system of linear equations and to perform only one Armijo-type line search at each iteration. The method is proved to possess global and local convergence under weaker conditions. Preliminary numerical results indicate that the algorithm is effective.
[1] Chen, B., Chen, X.: A global and local superlinear continuation smoothing method for $P_0$ and $R_0$NCP or monotone NCP. SIAM J. Optim. 9 (1999), 624-645. DOI 10.1137/S1052623497321109 | MR 1681055
[2] Chen, B., Harker, P. T.: Smoothing approximations to nonlinear complementarity problems. SIAM J. Optim. 7 (1997), 403-420. DOI 10.1137/S1052623495280615 | MR 1443626
[3] Chen, B., Xiu, N.: A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J. Optim. 9 (1999), 605-623. DOI 10.1137/S1052623497316191 | MR 1681059
[4] Clarke, F. H.: Optimization and Nonsmooth Analysis. John Wiley & Sons New York (1990). MR 1058436 | Zbl 0696.49002
[5] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. 1. Spinger New York (2003). MR 1955649
[6] Ferris, M. C., Mangasarian, O. L., Pang, J.-S., eds.: Complementarity: Applications, Algorithms and Extensions. Kluwer Academic Publishers Dordrecht (2001). MR 1818614 | Zbl 0966.00043
[7] Ferris, M. C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39 (1997), 669-713. DOI 10.1137/S0036144595285963 | MR 1491052 | Zbl 0891.90158
[8] Harker, P. T., Pang, J.-S.: Finite-dimensional variational inequality and non-linear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 48 (1990), 161-220. DOI 10.1007/BF01582255 | MR 1073707
[9] Jiang, H.: Smoothed Fischer-Burmeister equation methods for the complementarity problem. Technical Report Department of Mathematics, The University of Melbourne Parville, June 1997.
[10] Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15 (1977), 959-972. DOI 10.1137/0315061 | MR 0461556 | Zbl 0376.90081
[11] Moré, J. J., Rheinboldt, W. C.: On $P$- and $S$-functions and related classes of $n$-dimensional non-linear mappings. Linear Algebra Appl. 6 (1973), 45-68. MR 0311855
[12] Pang, J.-S.: Complementarity problems. In: Handbook of Global Optimization R. Horst, P. Pardalos Kluwer Academic Publishers Boston (1994), 271-338. MR 1377087 | Zbl 0821.90114
[13] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1993), 227-244. DOI 10.1287/moor.18.1.227 | MR 1250115 | Zbl 0776.65037
[14] Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program., Ser. A 87 (2000), 1-35. DOI 10.1007/s101079900127 | MR 1734657 | Zbl 0989.90124
[15] Qi, L., Sun, D.: Improving the convergence of non-interior point algorithm for nonlinear complementarity problems. Math. Comput. 69 (2000), 283-304. DOI 10.1090/S0025-5718-99-01082-0 | MR 1642766
[16] Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Program. 58 (1993), 353-367. DOI 10.1007/BF01581275 | MR 1216791 | Zbl 0780.90090
Partner of
EuDML logo