| Title:
             | 
Generalization of the Zlámal condition for simplicial finite elements in ${\Bbb R}^d$ (English) | 
| Author:
             | 
Brandts, Jan | 
| Author:
             | 
Korotov, Sergey | 
| Author:
             | 
Křížek, Michal | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
56 | 
| Issue:
             | 
4 | 
| Year:
             | 
2011 | 
| Pages:
             | 
417-424 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The famous Zlámal's minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in  $2d$. In this paper we present and discuss its generalization to simplicial partitions in any space dimension. (English) | 
| Keyword:
             | 
linear finite element | 
| Keyword:
             | 
mesh regularity | 
| Keyword:
             | 
minimum angle condition | 
| Keyword:
             | 
convergence | 
| Keyword:
             | 
higher-dimensional problems | 
| Keyword:
             | 
triangulations | 
| MSC:
             | 
65N12 | 
| MSC:
             | 
65N30 | 
| MSC:
             | 
65N50 | 
| idZBL:
             | 
Zbl 1240.65327 | 
| idMR:
             | 
MR2833170 | 
| DOI:
             | 
10.1007/s10492-011-0024-1 | 
| . | 
| Date available:
             | 
2011-06-23T13:11:11Z | 
| Last updated:
             | 
2020-07-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/141603 | 
| . | 
| Reference:
             | 
[1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics.B. G. Teubner Leipzig (1999). MR 1716824 | 
| Reference:
             | 
[2] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010 | 
| Reference:
             | 
[3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\Bbb R}^d$.Appl. Math. Lett. 22 (2009), 1210-1212. MR 2532540, 10.1016/j.aml.2009.01.031 | 
| Reference:
             | 
[4] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489 | 
| Reference:
             | 
[5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174 | 
| Reference:
             | 
[6] Eriksson, F.: The law of sines for tetrahedra and $n$-simplices.Geom. Dedicata 7 (1978), 71-80. Zbl 0375.50008, MR 0474009, 10.1007/BF00181352 | 
| Reference:
             | 
[7] Hannukainen, A., Korotov, S., Křížek, M.: On global and local mesh refinements by a generalized conforming bisection algorithm.J. Comput. Appl. Math. 235 (2010), 419-436. Zbl 1207.65145, MR 2677699, 10.1016/j.cam.2010.05.046 | 
| Reference:
             | 
[8] Lin, J., Lin, Q.: Global superconvergence of the mixed finite element methods for 2-D Maxwell equations.J. Comput. Math. 21 (2003), 637-646. Zbl 1032.65101, MR 1999974 | 
| Reference:
             | 
[9] Rektorys, K.: Survey of Applicable Mathematics, Vol. 1.Kluwer Academic Publishers Dordrecht (1994). 10.1007/978-94-015-8308-4 | 
| Reference:
             | 
[10] Schewchuk, J. R.: What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures.Preprint Univ. of California at Berkeley (2002), 1-66. MR 3190484 | 
| Reference:
             | 
[11] Ženíšek, A.: The convergence of the finite element method for boundary value problems of a system of elliptic equations.Apl. Mat. 14 (1969), 355-377 Czech. MR 0245978 | 
| Reference:
             | 
[12] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. MR 0243753, 10.1007/BF02161362 | 
| . |