Previous |  Up |  Next

Article

Title: Generalization of the Zlámal condition for simplicial finite elements in ${\Bbb R}^d$ (English)
Author: Brandts, Jan
Author: Korotov, Sergey
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 4
Year: 2011
Pages: 417-424
Summary lang: English
.
Category: math
.
Summary: The famous Zlámal's minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in $2d$. In this paper we present and discuss its generalization to simplicial partitions in any space dimension. (English)
Keyword: linear finite element
Keyword: mesh regularity
Keyword: minimum angle condition
Keyword: convergence
Keyword: higher-dimensional problems
Keyword: triangulations
MSC: 65N12
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1240.65327
idMR: MR2833170
DOI: 10.1007/s10492-011-0024-1
.
Date available: 2011-06-23T13:11:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141603
.
Reference: [1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics.B. G. Teubner Leipzig (1999). MR 1716824
Reference: [2] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010
Reference: [3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\Bbb R}^d$.Appl. Math. Lett. 22 (2009), 1210-1212. MR 2532540, 10.1016/j.aml.2009.01.031
Reference: [4] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489
Reference: [5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.North-Holland Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [6] Eriksson, F.: The law of sines for tetrahedra and $n$-simplices.Geom. Dedicata 7 (1978), 71-80. Zbl 0375.50008, MR 0474009, 10.1007/BF00181352
Reference: [7] Hannukainen, A., Korotov, S., Křížek, M.: On global and local mesh refinements by a generalized conforming bisection algorithm.J. Comput. Appl. Math. 235 (2010), 419-436. Zbl 1207.65145, MR 2677699, 10.1016/j.cam.2010.05.046
Reference: [8] Lin, J., Lin, Q.: Global superconvergence of the mixed finite element methods for 2-D Maxwell equations.J. Comput. Math. 21 (2003), 637-646. Zbl 1032.65101, MR 1999974
Reference: [9] Rektorys, K.: Survey of Applicable Mathematics, Vol. 1.Kluwer Academic Publishers Dordrecht (1994). 10.1007/978-94-015-8308-4
Reference: [10] Schewchuk, J. R.: What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures.Preprint Univ. of California at Berkeley (2002), 1-66. MR 3190484
Reference: [11] Ženíšek, A.: The convergence of the finite element method for boundary value problems of a system of elliptic equations.Apl. Mat. 14 (1969), 355-377 Czech. MR 0245978
Reference: [12] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. MR 0243753, 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_56-2011-4_5.pdf 241.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo