Previous |  Up |  Next

Article

Title: A classical decision theoretic perspective on worst-case analysis (English)
Author: Sniedovich, Moshe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 5
Year: 2011
Pages: 499-509
Summary lang: English
.
Category: math
.
Summary: We examine worst-case analysis from the standpoint of classical Decision Theory. We elucidate how this analysis is expressed in the framework of Wald's famous Maximin paradigm for decision-making under strict uncertainty. We illustrate the subtlety required in modeling this paradigm by showing that information-gap's robustness model is in fact a Maximin model in disguise. (English)
Keyword: worst-case analysis
Keyword: uncertainty
Keyword: decision theory
Keyword: maximin
Keyword: robustness
MSC: 68T37
MSC: 90C47
MSC: 91A05
MSC: 91B06
idZBL: Zbl 1249.91023
idMR: MR2852068
DOI: 10.1007/s10492-011-0028-x
.
Date available: 2011-09-22T14:21:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141621
.
Reference: [1] Adali, S., Elishakoff, I., Richter, A., Verijenko, V. E.: Optimal design of symmetric angle-ply laminates for maximum buckling load with scatter in material properties.Fifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization AIAA Press Panama City Beach (1994), 1041-1045.
Reference: [2] Adali, S., Richter, A., Verijenko, V. E.: Minimum weight design of symmetric angle-ply laminates with incomplete information on initial imperfections.J. Appl. Mech. 64 (1997), 90-96. Zbl 1002.74569, 10.1115/1.2787299
Reference: [3] Ben-Haim, Y.: Information Gap Decision Theory.Academic Press San Diego (2001). Zbl 0985.91013, MR 1856675
Reference: [4] Ben-Haim, Y.: Info-Gap Decision Theory.Elsevier Amsterdam (2006).
Reference: [5] Ben-Tal, A., Ghaoui, L. El, Nemirovski, A.: Robust Optimization.Princeton University Press Princeton (2009). Zbl 1221.90001, MR 2546839
Reference: [6] Faria, A. R. de, Almeida, S. F. M. de: Buckling optimization of plates with variable thickness subjected to nonuniform uncertain loads.Int. J. Solids Struct. 40 (2003), 3955-3966. Zbl 1038.74604, 10.1016/S0020-7683(03)00177-X
Reference: [7] Demyanov, V. M., Malozemov, V. N.: Introduction to Minimax.Dover Publications New York (1990). MR 1088479
Reference: [8] Du, D. Z., Pardalos, P. M.: Minimax and Applications.Kluwer Dordrecht (1995). Zbl 0832.00015, MR 1376815
Reference: [9] Elishakoff, I.: Uncertain buckling: its past, present and future.Int. J. Solids Struct. 37 (2000), 6869-6889. Zbl 0980.74022, 10.1016/S0020-7683(99)00318-2
Reference: [10] French, S. D.: Decision Theory.Ellis Horwood Chichester (1988). Zbl 0667.90004, MR 1041792
Reference: [11] Harsanyi, J. C.: Can the maximin principle serve as a basis for morality? A critique of John Rawls's theory.Essays on Ethics, Social Behavior, and Scientific Explanation Springer Berlin (1976), 37-63.
Reference: [12] Hlaváček, I.: Uncertain input data problems and the worst scenario method.Appl. Math. 52 (2007), 187-196. Zbl 1164.93354, MR 2316152, 10.1007/s10492-007-0010-9
Reference: [13] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier Amsterdam (2004). Zbl 1116.74003, MR 2285091
Reference: [14] Huber, P. J.: Robust Statistics.Wiley New York (1981). Zbl 0536.62025, MR 0606374
Reference: [15] Hurwicz, L.: A class of criteria for decision-making under ignorance. Cowles Commission Discussion Paper: Statistics No. 356, 1951..
Reference: [16] Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications.Kluwer Dordrecht (1997). Zbl 0873.90071, MR 1480918
Reference: [17] Lombardi, M.: Optimization of uncertain structures using non-probabilistic models.Comput. Struct. 67 (1998), 99-103. Zbl 0933.74052, 10.1016/S0045-7949(97)00161-2
Reference: [18] Rawls, J.: Theory of Justice.Belknap Press Cambridge (1973).
Reference: [19] Reemsten, R., Rückmann, J., eds.: Semi-Infinite Programming. Workshop, Cottbus, Germany, September 1996.Kluwer Boston (1998).
Reference: [20] Resnik, M. D.: Choices: An Introduction to Decision Theory.University of Minnesota Press Minneapolis (1987).
Reference: [21] Rustem, B., Howe, M.: Algorithms for Worst-case Design and Applications to Risk Management.Princeton University Press Princeton (2002). Zbl 1140.90013, MR 1923539
Reference: [22] Savage, L. J.: The theory of statistical decision.J. Am. Stat. Assoc. 46 (1951), 55-67. Zbl 0042.14302, 10.1080/01621459.1951.10500768
Reference: [23] Sniedovich, M.: The art and science of modeling decision-making under severe uncertainty.Decis. Mak. Manuf. Serv. 1 (2007), 111-136. Zbl 1231.90243, MR 2386265
Reference: [24] Sniedovich, M.: Wald's Maximin Model: a Treasure in Disguise.J. Risk Finance 9 (2008), 287-291. 10.1108/15265940810875603
Reference: [25] Sniedovich, M.: FAQS about Info-Gap decision theory.Working Paper No. MS-12-08 Department of Mathematics and Statistics, The University of Melbourne Melbourne (2008), info-gap.moshe-online.com/faqs\_about\_infogap.pdf.
Reference: [26] Tintner, G.: Abraham Wald's contributions to econometrics.Ann. Math. Stat. 23 (1952), 21-28. Zbl 0046.37601, MR 0045659, 10.1214/aoms/1177729482
Reference: [27] Neumann, J. von: Zur Theorie der Gesellschaftsspiele.Math. Ann. 100 (1928), 295-320 German. MR 1512486, 10.1007/BF01448847
Reference: [28] Neumann, J. von, Morgenstern, O.: Theory of Games and Economic Behavior.Princeton University Press Princeton (1944). MR 0011937
Reference: [29] Wald, A.: Contributions to the theory of statistical estimation and testing hypotheses.Ann. Math. Stat. 10 (1939), 299-326. Zbl 0024.05405, MR 0000932, 10.1214/aoms/1177732144
Reference: [30] Wald, A.: Statistical decision functions which minimize the maximum risk.Ann. Math. 46 (1945), 265-280. Zbl 0063.08126, MR 0012402, 10.2307/1969022
Reference: [31] Wald, A.: Statistical Decision Functions.J. Wiley & Sons New York (1950). Zbl 0040.36402, MR 0036976
.

Files

Files Size Format View
AplMat_56-2011-5_4.pdf 248.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo