Previous |  Up |  Next

Article

Title: Non-exchangeable random variables, Archimax copulas and their fitting to real data (English)
Author: Bacigál, Tomáš
Author: Jágr, Vladimír
Author: Mesiar, Radko
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 4
Year: 2011
Pages: 519-531
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to open a new way of modelling non-exchangeable random variables with a class of Archimax copulas. We investigate a connection between powers of generators and dependence functions, and propose some construction methods for dependence functions. Application to different hydrological data is given. (English)
Keyword: Archimax copula
Keyword: dependence function
Keyword: generator
MSC: 62A10
MSC: 93E12
idZBL: Zbl 1227.93120
idMR: MR2884858
.
Date available: 2011-09-23T11:15:48Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141656
.
Reference: [1] Bacigál, T., Juráňová, M., Mesiar, R.: On some new constructions of Archimedean copulas and applications to fitting problems.Neural Network World 1 (2010), 10, 81–90.
Reference: [2] Capéraá, P., Fougéres, A.-L., Genest, G.: Bivariate distributions with given extreme value attractor.J. Multivariate Anal. 72 (2000), 1, 30–49. MR 1747422, 10.1006/jmva.1999.1845
Reference: [3] De Baets, B., De Meyer, H., Mesiar, R.: Lipschitz continuity of copulas w.r.t. $L_p$-norms.Nonlinear Anal., Theory, Methods Appl. 72(9-10) (2010), 3722–3731. Zbl 1189.26015, MR 2606816
Reference: [4] Durante, F., Mesiar, R.: $L^\infty $-measure of non-exchangeability for bivariate extreme value and Archimax copulas.J. Math. Anal. Appl. 369 (2010), 2, 610–615. Zbl 1191.62094, MR 2651706, 10.1016/j.jmaa.2010.04.005
Reference: [5] Genest, G., Favre, A.-C.: Everything you always wanted to know about copula modeling but were afraid to ask.J. Hydrolog. Engrg. 12 (2007), 4, 347–368. 10.1061/(ASCE)1084-0699(2007)12:4(347)
Reference: [6] Genest, C., Rémillard, B.: Tests of independence or randomness based on the empirical copula process.Test 13 (2004), 335–369. MR 2154005, 10.1007/BF02595777
Reference: [7] Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a power study.Insurance Math. Econom. 44 (2009), 199–213. Zbl 1161.91416, MR 2517885, 10.1016/j.insmatheco.2007.10.005
Reference: [8] Genest, C., Ghoudi, K., Rivest, L.-P.: A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions.Biometrika 82 (1995), 543–552. MR 1366280, 10.1093/biomet/82.3.543
Reference: [9] Genest, C., Ghoudi, K., Rivest, L.-P.: Discussion of the paper by Frees and Valdez (1998).North Amer. Act. J. 2 (1998), 143–149. MR 2011244
Reference: [10] Joe, H.: Multivariate Models and Dependence Concepts.Chapman and Hall, London 1997. MR 1462613
Reference: [11] Khoudraji, A.: Contributions à l’étude des copules et à la modélisation des valeurs extrémes bivariées.PhD. Thesis, Université Laval, Québec 1995.
Reference: [12] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms.Kluwer, Dordrecht 2000. Zbl 1010.03046, MR 1790096
Reference: [13] Liebscher, E.: Construction of Asymmetric multivariate copulas.J. Multivariate Anal. 99 (2008), 10, 2234–2250. Zbl 1151.62043, MR 2463386, 10.1016/j.jmva.2008.02.025
Reference: [14] Mesiarová, A.: k-l$_p$-Lipschitz t-norms.Internat. J. Approx. Reasoning 46 (2007), 3, 596–604. Zbl 1189.03058, MR 2371644, 10.1016/j.ijar.2007.02.002
Reference: [15] Nelsen, R. B.: An Introduction to Copulas.Second edition. Springer–Verlag, New York 2006. Zbl 1152.62030, MR 2197664
Reference: [16] Tawn, J. A.: Bivariate extreme value theory: Models and estimation.Biometrika 75 (1988), 397–415. Zbl 0653.62045, MR 0967580, 10.1093/biomet/75.3.397
Reference: [17] Vorosmarty, C. J., Fekete, B. M., A., B., Tucker: Global River Discharge, 1807-1991, V.1.1 (RivDIS). Data set. 1998. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, U.S.A. doi:10.3334/ORNLDAAC/199.
Reference: [18] Yager, R. R.: On a general class of fuzzy connectives.Fuzzy Sets and Systems 4 (1980), 3, 235–242. Zbl 0443.04008, MR 0589241, 10.1016/0165-0114(80)90013-5
.

Files

Files Size Format View
Kybernetika_47-2011-4_2.pdf 395.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo