Previous |  Up |  Next

Article

Title: Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle (English)
Author: Jiang, Yuan
Author: Dai, Jiyang
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 4
Year: 2011
Pages: 612-629
Summary lang: English
.
Category: math
.
Summary: This paper treats the question of robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. We first present the solution of the global robust output regulation problem for output feedback system with nonlinear exosystem. Then we show that the robust control problem for the modified FitzHugh-Nagumo neuron model can be formulated as the global robust output regulation problem and the solvability conditions for the output regulation problem for the modified FitzHugh-Nagumo neuron model are all satisfied. Then we apply the obtained output regulation results to the control problem for modified FitzHugh-Nagumo neuron model. Finally, an output feedback control law is designed for the modified FitzHugh-Nagumo neuron model to achieve global stability of the closed-loop system in the presence of uncertain parameters and external stimulus. An example is shown that the proposed algorithm can completely reject the external electrical stimulation generated from a Van der Pol circuit. (English)
Keyword: control theory
Keyword: Lyapunov methods
Keyword: internal model principle
Keyword: modified FitzHugh--Nagumo model
Keyword: Van der Pol circuit
MSC: 62A10
MSC: 93E12
idZBL: Zbl 1227.93033
idMR: MR2884864
.
Date available: 2011-09-23T11:28:46Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141662
.
Reference: [1] Arcak, M., Kokotovic, P.: Nonlinear observers: A circle criteria design and robustness analysis.Automatica 37 (2001), 1923–1930. MR 2110678, 10.1016/S0005-1098(01)00160-1
Reference: [2] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Structurally stable output regulation of nonlinear systems.Automatica 33 (1997), 369–385. Zbl 0873.93043, MR 1442555, 10.1016/S0005-1098(96)00184-7
Reference: [3] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability.IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293. 10.1109/TCSII.2008.2009962
Reference: [4] Chen, Z., Huang, J.: Global robust output regulation for output feedback systems.IEEE Trans. Automat. Control 50 (2005), 117–121. MR 2110818, 10.1109/TAC.2004.841125
Reference: [5] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems.Automatica 41 (2005), 1447–1454. Zbl 1086.93013, MR 2160490, 10.1016/j.automatica.2005.03.015
Reference: [6] Davison, E. J.: The robust control of a servomechanism problem for linear time-invariant multivariable systems.IEEE Trans. Automat. Control 21 (1976), 25–34. Zbl 0326.93007, MR 0406616, 10.1109/TAC.1976.1101137
Reference: [7] Desoer, C. A., Lin, C. A.: Tracking and disturbance rejection of MIMO nonlinear systems with PI controller.IEEE Trans. Automat. Control 30 (1985), 861–867. Zbl 0573.93027, MR 0799479, 10.1109/TAC.1985.1104078
Reference: [8] Benedetto, M. D. Di: Synthesis of an internal model for nonlinear output regulation.Internat. J. Control 45 (1987), 1023–1034. MR 0880281, 10.1080/00207178708933784
Reference: [9] Che, Y. Q., Wang, J., Zhou, S. S., Deng, B.: Robust synchronization control of coupled chaotic neurons under external electrical stimulation.Chaos Solit. Fract. 40 (2009), 1333–1342. Zbl 1197.37110, MR 2526117
Reference: [10] Ding, Z.: Global output regulation of uncertain nonlinear systems with exogenous signals.Automatica 37 (2001), 113–119. Zbl 0964.93057, MR 1832885, 10.1016/S0005-1098(00)00129-1
Reference: [11] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems.IEEE Trans. Automat. Control 51 (2006), 498–503. MR 2205690, 10.1109/TAC.2005.864199
Reference: [12] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay.Kybernetika. 45 (2009), 33–48. Zbl 1158.93303, MR 2489579
Reference: [13] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems.IEEE Trans. Automat. Control 35 (1990), 131–140. Zbl 0704.93034, MR 1038409, 10.1109/9.45168
Reference: [14] Francis, D. A., Wonham, W. M.: The internal model principle for linear multivariable regulators.Appl. Math. Optim. 2 (1975), 170–194. Zbl 0351.93015, MR 0389331, 10.1007/BF01447855
Reference: [15] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem.IEEE Trans. Automat. Control 49 (2004), 2203–2218. MR 2106750, 10.1109/TAC.2004.839236
Reference: [16] Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology.Ann. Rev. Genom, Hum. Genet. 2 (2001), 343–372. 10.1146/annurev.genom.2.1.343
Reference: [17] Gong, Q., Lin, W.: A note on global output regulation of nonlinear system in the output feedback form.IEEE Trans. Automat. Control 48 (2003), 1049–1054. MR 1986277, 10.1109/TAC.2003.812804
Reference: [18] Huang, J.: Asymptotic tracking and disturbance rejection in uncertain nonlinear systems.IEEE Trans. Automat. Control 40 (1995), 1118–1122. Zbl 0829.93027, MR 1345975, 10.1109/9.388697
Reference: [19] Huang, J., Lin, C-F.: On a robust nonlinear servomechanism problem.IEEE Trans. Automat. Control. 39 (1994), 1510–1513. Zbl 0800.93290, MR 1283933, 10.1109/9.299646
Reference: [20] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomechanism problem.Automatica 26 (1990), 963–972. Zbl 0717.93019, MR 1080983, 10.1016/0005-1098(90)90081-R
Reference: [21] Isidori, A.: Nonlinear Control Systems.3rd eddition. Springer-Verlag, New York 1995. Zbl 0878.93001, MR 1410988
Reference: [22] Johnson, C. D.: Accommodation of external disturbances in linear regulator and servomechanism problems.IEEE Trans. Automat. Control. 16 (1971), 635–644. 10.1109/TAC.1971.1099830
Reference: [23] Kitano, H.: Systems biology: A brief overview.Science 295 (2002), 1662–1664. 10.1126/science.1069492
Reference: [24] Kürten, K. E., Clark, J. W.: Chaos in neural systems.Phys. Lett. A, 114 (1986), 413–418. MR 0829167, 10.1016/0375-9601(86)90729-2
Reference: [25] Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: the smooth case.IEEE Trans. Automat. Control. 47 (2002), 1249–1266. MR 1917435, 10.1109/TAC.2002.800773
Reference: [26] Liu, S., Jiang, Y., Liu, P.: Rejection of nonharmonic disturbances in nonlinear systems.Kybernetika 46 (2010), 758–798. Zbl 1205.93158, MR 2778927
Reference: [27] Marino, R., Tomei, P.: Nonlinear Control Design-Nonlinear, Robust and Adaptive.Prentice Hall, Englewood Cliffs, New York 1994.
Reference: [28] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Nonlinear Dynamical Analysis on Coupled Modified FitzHugh–Nagumo Neuron Model.Lecture Notes in Computer Science. Springer Berlin – Heidelberg. 3496 (2005), 95–101. Zbl 1082.68677
Reference: [29] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Controlling synchronization of modified FitzHugh–Nagumo neurons under external electrical stimulation. NeuroQuantology 1 (2006), 50–67.
Reference: [30] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem.IEEE Trans. Automat. Control 49 (2004), 1737–1742. MR 2091325, 10.1109/TAC.2004.835404
Reference: [31] Rinzel, J.: A formal classification of bursting mechanisms in excitable systems, in mathematical topics in population niology, morphogenesis and neurosciences.Lecture Notes in Biomath., Springer–Verlag, New York. 71 (1987), 267–281. MR 0913344
Reference: [32] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem.Kybernetika 45 (2009), 427–444. Zbl 1165.93320, MR 2543132
Reference: [33] Serrani, A., Isidori, A.: Global robust output regulation for a class of nonlinear systems.Syst. Control Lett. 39 (2000), 133–139. Zbl 0948.93027, MR 1826676, 10.1016/S0167-6911(99)00099-7
Reference: [34] Sun, W., Huang, J.: Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application.Science in China, Ser. F: Information Sciences 52 (2009), 2172–2179. Zbl 1182.93072, MR 2566641
Reference: [35] Venkatesh, K. V., Bhartiya, S., Ruhela, A.: Mulitple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli.FEBS Lett. 563, (2004), 234–240. 10.1016/S0014-5793(04)00310-2
Reference: [36] Wang, J., Zhang, T., Deng, B.: Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control.Chaos Solit. Fract. 31 (2007), 30–38. Zbl 1133.92008, MR 2263262
Reference: [37] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143–149. Zbl 1140.93462, MR 2266780, 10.1016/j.automatica.2006.08.011
Reference: [38] Xi, Z., Ding, Z.: Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem.IET Control. Theory Appl. 1 (2007), 1504–1511. MR 2350838, 10.1049/iet-cta:20060432
.

Files

Files Size Format View
Kybernetika_47-2011-4_8.pdf 474.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo