Previous |  Up |  Next

Article

Title: Some geometric aspects of the calculus of variations in several independent variables (English)
Author: Saunders, David
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 18
Issue: 1
Year: 2010
Pages: 3-19
Summary lang: English
.
Category: math
.
Summary: This paper describes some recent research on parametric problems in the calculus of variations. It explains the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables, and it gives an interpretation of the first variation formula in this context in terms of cohomology. (English)
Keyword: calculus of variations
Keyword: parametric problems
MSC: 35A15
MSC: 58A10
MSC: 58A20
idZBL: Zbl 1235.58014
idMR: MR2848502
.
Date available: 2011-10-25T07:14:03Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141669
.
Reference: [1] Anderson, I.M.: The variational bicomplex.book preprint, technical report of the Utah State University, 1989 Available at http://www.math.usu.edu/fg_mp/ Zbl 0881.35069, MR 1188434
Reference: [2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.Springer 2000 Zbl 0954.53001, MR 1747675
Reference: [3] Crampin, M., Saunders, D.J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations.Acta Appl. Math. 76 (1) 2003 37–55 Zbl 1031.53106, MR 1967453, 10.1023/A:1022862117662
Reference: [4] Crampin, M., D.J. Saunders: The Hilbert-Carath´eodory and Poincar´e-Cartan forms for higher-order multiple-integral variational problems.Houston J. Math. 30 (3) 2004 657–689 MR 2083869
Reference: [5] M. Crampin, D.J. Saunders: On null Lagrangians.Diff. Geom. Appl. 22 (2) 2005 131–146 MR 2122738
Reference: [6] Crampin, M., Saunders, D.J.: Homotopy Operators for the Variational Bicomplex, Representations of the Euler-Lagrange Complex, and the Helmholtz-Sonin Conditions.Lobachevskii J. Math. 30 (2) 2009 107–123 Zbl 1177.49056, MR 2525126, 10.1134/S1995080209020036
Reference: [7] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer 1993 MR 1202431
Reference: [8] Krupka, D.: Lepagean forms and higher order variational theories.Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics , S. Benenti, M. Francaviglia, A. Lichnerowicz (eds.)Tecnoprint 1983 197–238 MR 0773488
Reference: [9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations.Krieger 1973
Reference: [10] Saunders, D.J.: The geometry of jet bundles.Cambridge University Press 1989 Zbl 0665.58002, MR 0989588
Reference: [11] Saunders, D.J.: Jet manifolds and natural bundles.Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1035–1068 Zbl 1236.58006, MR 2389651
Reference: [12] Saunders, D.J.: Homogeneous variational complexes and bicomplexes.J. Geom. Phys. 59 2009 727–739 Zbl 1168.58006, MR 2510165
Reference: [13] Tulczyjew, W.M.: The Euler-Lagrange resolution.Lecture Notes in Mathematics 836 , Springer 1980 22–48 Zbl 0456.58012, MR 0607685, 10.1007/BFb0089725
Reference: [14] Vinogradov, A.M.: The $\mathcal {C}$-spectral sequence, Lagrangian formalism and conservation laws.J. Math. Anal. Appl. 100 1984 1–129 MR 0739951, 10.1016/0022-247X(84)90071-4
Reference: [15] Vitolo, R.: Variational sequences.Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1115–1163 Zbl 1236.58029, MR 2389653
.

Files

Files Size Format View
ActaOstrav_18-2010-1_2.pdf 355.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo