Full entry |
PDF
(0.3 MB)
Feedback

reduced covariance measure; factorial moment and cumulant measures; kernel-type estimator; subsampling; mean squared error; Poisson cluster process; hard-core process

References:

[1] S. Böhm, L. Heinrich, V. Schmidt: **Kernel estimation of the spectral density of stationary random closed sets**. Austral. & New Zealand J. Statist. 46 (2004), 41-52. DOI 10.1111/j.1467-842X.2004.00310.x | MR 2060951 | Zbl 1061.62057

[2] K. L. Chung: **A Course in Probability Theory**. Second edition. Harcourt Brace Jovanovich, New York 1974. MR 0346858 | Zbl 0345.60003

[3] D. J. Daley, D. Vere-Jones: **An Introduction to the Theory of Point Processes**. Second edition. Vol I and II, Springer, New York 2003, 2008. MR 0950166 | Zbl 1026.60061

[4] S. David: **Central Limit Theorems for Empirical Product Densities of Stationary Point Processes**. Phd. Thesis, Augsburg Universität 2008.

[5] L. Heinrich: **Asymptotic gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes**. Statistics 19 (1988), 87-106. DOI 10.1080/02331888808802075 | MR 0921628 | Zbl 0666.62032

[6] L. Heinrich: **Normal approximation for some mean-value estimates of absolutely regular tesselations**. Math. Methods Statist. 3 (1994), 1-24. MR 1272628

[7] L. Heinrich: **Asymptotic goodness-of-fit tests for point processes based on scaled empirical K-functions**. Submitted.

[8] L. Heinrich, E. Liebscher: **Strong convergence of kernel estimators for product densities of absolutely regular point processes**. J. Nonparametric Statist. 8 (1997), 65-96. DOI 10.1080/10485259708832715 | MR 1658113 | Zbl 0884.60041

[9] L. Heinrich, M. Prokešová: **On estimating the asymptotic variance of stationary point processes**. Methodology Comput. in Appl. Probab. 12 (2010), 451-471. DOI 10.1007/s11009-008-9113-3 | MR 2665270 | Zbl 1197.62122

[10] L. Heinrich, V. Schmidt: **Normal convergence of multidimensional shot noise and rates of this convergence**. Adv. in Appl. Probab. 17 (1985), 709-730. DOI 10.2307/1427084 | MR 0809427 | Zbl 0609.60036

[11] J. Illian, A. Penttinen, H. Stoyan, D. Stoyan: **Statistical Analysis and Modelling of Spatial Point Patterns**. John Wiley and Sons, Chichester 2008. MR 2384630 | Zbl 1197.62135

[12] E. Jolivet: **Central limit theorem and convergence of empirical processes of stationary point processes**. In: Point Processes and Queueing Problems (P. Bartfai and J. Tomko, eds.), North-Holland, New York 1980, pp. 117-161. MR 0617406

[13] S. Mase: **Asymptotic properties of stereological estimators for stationary random sets**. J. Appl. Probab. 19 (1982), 111-126. DOI 10.2307/3213921 | MR 0644424

[15] D. N. Politis, M. Sherman: **Moment estimation for statistics from marked point processes**. J. Roy. Statist. Soc. Ser. B 63 (2001), 261-275. DOI 10.1111/1467-9868.00284 | MR 1841414 | Zbl 0979.62074

[16] M. Prokešová, E. B. Vedel-Jensen: **Asymptotic Palm likelihood theory for stationary point processes**. Submitted.

[17] B. D. Ripley: **Statistical Inference for Spatial Processes**. Cambridge University Press, Cambridge 1988. MR 0971986 | Zbl 0716.62100

[18] D. Stoyan, W. S. Kendall, J. Mecke: **Stochastic Geometry and its Applications**. Second edition. J. Wiley & Sons, Chichester 1995. MR 0895588 | Zbl 0838.60002

[19] J. C. Taylor: **An Introduction to Measure and Probability**. Springer, New York 1997. MR 1420194

[20] L. Zhengyan, L. Chuanrong: **Limit Theory for Mixing Dependent Random Variables**. Kluwer Academic Publishers, Dordrecht 1996. MR 1486580 | Zbl 0889.60001