Title:
|
On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum (English) |
Author:
|
Sergeev, Sergeĭ |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
5 |
Year:
|
2011 |
Pages:
|
715-721 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the two-sided eigenproblem $A\otimes x=\lambda\otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem. (English) |
Keyword:
|
extremal algebra |
Keyword:
|
tropical algebra |
Keyword:
|
generalized eigenproblem |
MSC:
|
15A22 |
MSC:
|
15A80 |
MSC:
|
91A46 |
MSC:
|
93C65 |
idZBL:
|
Zbl 1248.15023 |
idMR:
|
MR2850458 |
. |
Date available:
|
2011-11-10T15:37:51Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141686 |
. |
Reference:
|
[1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebras.In: Handbook of Linear Algebra (L. Hogben, ed.), Discrete Math. Appl. 39, Chapter 25, Chapman and Hall 2006. 10.1201/9781420010572.ch25 |
Reference:
|
[2] Baccelli, F. L., Cohen, G., Olsder, G.-J., Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems.Wiley 1992. Zbl 0824.93003, MR 1204266 |
Reference:
|
[3] Binding, P. A., Volkmer, H.: A generalized eigenvalue problem in the max algebra.Linear Algebra Appl. 422 (2007), 360–371. Zbl 1121.15011, MR 2305125 |
Reference:
|
[4] Brunovsky, P.: A classification of linear controllable systems.Kybernetika 6 (1970), 173–188. Zbl 0199.48202, MR 0284247 |
Reference:
|
[5] Burns, S. M.: Performance Analysis and Optimization of Asynchronous Circuits.PhD Thesis, California Institute of Technology 1991. MR 2686560 |
Reference:
|
[6] Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl.367 (2003), 313–335. MR 1976928 |
Reference:
|
[7] Butkovič, P.: Max-linear Systems: Theory and Algorithms.Springer 2010. Zbl 1202.15032, MR 2681232 |
Reference:
|
[8] Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick, M. M., Quadrat, J. P.: Numerical computation of spectral elements in max-plus algebra.In: Proc. IFAC Conference on Systems Structure and Control, IRCT, Nantes 1998, pp. 699–706. |
Reference:
|
[9] Cuninghame-Green, R. A.: Minimax Algebra.Lecture Notes in Econom. and Math. Systems 166, Springer, Berlin 1979. Zbl 0399.90052, MR 0580321 |
Reference:
|
[10] Cuninghame-Green, R. A., Butkovič, P.: The equation $A\otimes x=B\otimes y$ over (max,+).Theoret. Comput. Sci. 293 (2003), 3–12. Zbl 1021.65022, MR 1957609, 10.1016/S0304-3975(02)00228-1 |
Reference:
|
[11] Cuninghame-Green, R. A., Butkovič, P.: Generalised eigenproblem in max algebra.In: Proc. 9th International Workshop WODES 2008, pp. 236–241. |
Reference:
|
[12] Elsner, L., Driessche, P. van den: Modifying the power method in max algebra.Linear Algebra Appl. 332–334 (2001), 3–13. MR 1839423 |
Reference:
|
[13] Gantmacher, F. R.: The Theory of Matrices.Chelsea, 1959. Zbl 0085.01001 |
Reference:
|
[14] Gaubert, S., Sergeev, S.: The level set method for the two-sided eigenproblem.E-print http://arxiv.org/pdf/1006.5702. |
Reference:
|
[15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work.Princeton Univ. Press, 2005. |
Reference:
|
[16] McDonald, J. J., Olesky, D. D., Schneider, H., Tsatsomeros, M. J., Driessche, P. van den: Z-pencils.Electron. J. Linear Algebra 4 (1998), 32–38. MR 1643088 |
Reference:
|
[17] Mehrmann, V., Nabben, R., Virnik, E.: Generalization of Perron-Frobenius theory to matrix pencils.Linear Algebra Appl. 428 (2008), 20–38. MR 2372583 |
. |