Previous |  Up |  Next

Article

Title: Second order boundary value problems with sign-changing nonlinearities and nonhomogeneous boundary conditions (English)
Author: Graef, John R.
Author: Kong, Lingju
Author: Kong, Qingkai
Author: Yang, Bo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 4
Year: 2011
Pages: 337-356
Summary lang: English
.
Category: math
.
Summary: The authors consider the boundary value problem with a two-parameter nonhomogeneous multi-point boundary condition \gather u''+g(t)f(t,u)=0, \quad t\in (0,1),\nonumber \\ u(0)=\alpha u(\xi )+\lambda ,\quad u(1)=\beta u(\eta )+\mu .\nonumber \endgather Criteria for the existence of nontrivial solutions of the problem are established. The nonlinear term $f(t,x)$ may take negative values and may be unbounded from below. Conditions are determined by the relationship between the behavior of $f(t, x)/x$ for $x$ near $0$ and $\pm \infty $, and the smallest positive characteristic value of an associated linear integral operator. The analysis mainly relies on topological degree theory. This work complements some recent results in the literature. The results are illustrated with examples. (English)
Keyword: nontrivial solutions
Keyword: nonhomogeneous boundary conditions
Keyword: cone
Keyword: Krein-Rutman theorem
Keyword: Leray-Schauder degree
MSC: 34B08
MSC: 34B10
MSC: 34B15
idZBL: Zbl 1249.34055
idMR: MR2985544
DOI: 10.21136/MB.2011.141693
.
Date available: 2011-11-10T15:47:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141693
.
Reference: [1] Deimling, K.: Nonlinear Functional Analysis.Springer New York (1985). Zbl 0559.47040, MR 0787404
Reference: [2] Graef, J. R., Kong, L.: Necessary and sufficient conditions for the existence of symmetric positive solutions of multi-point boundary value problems.Nonlinear Anal. 68 (2008), 1529-1552. Zbl 1139.34017, MR 2388830, 10.1016/j.na.2006.12.037
Reference: [3] Graef, J. R., Kong, L.: Existence results for nonlinear periodic boundary value problems.Proc. Edinb. Math. Soc., II. Ser. 52 (2009), 79-95. Zbl 1178.34024, MR 2475882, 10.1017/S0013091507000788
Reference: [4] Graef, J. R., Kong, L.: Periodic solutions for functional differential equations with sign-changing nonlinearities.Proc. R. Soc. Edinb., Sect. A, Math. 140 (2010), 597-616. Zbl 1200.34077, MR 2651375, 10.1017/S0308210509000523
Reference: [5] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Academic Press Orlando (1988). Zbl 0661.47045, MR 0959889
Reference: [6] Guo, Y., Shan, W., Ge, W.: Positive solutions for second-order $m$-point boundary value problems.J. Comput. Appl. Math. 151 (2003), 415-424. Zbl 1026.34016, MR 1956792, 10.1016/S0377-0427(02)00739-2
Reference: [7] Han, G., Wu, Y.: Nontrivial solutions of singular two-point boundary value problems with sign-changing nonlinear terms.J. Math. Anal. Appl. 325 (2007), 1327-1338. Zbl 1111.34019, MR 2270087, 10.1016/j.jmaa.2006.02.076
Reference: [8] Kong, L., Kong, Q.: Second-order boundary value problems with nonhomogeneous boundary conditions (I).Math. Nachr. 278 (2005), 173-193. Zbl 1060.34005, MR 2111808, 10.1002/mana.200410234
Reference: [9] Kong, L., Kong, Q.: Second-order boundary value problems with nonhomogeneous boundary conditions (II).J. Math. Anal. Appl. 330 (2007), 1393-1411. Zbl 1119.34009, MR 2308449, 10.1016/j.jmaa.2006.08.064
Reference: [10] Kong, L., Kong, Q.: Uniqueness and parameter-dependence of solutions of second order boundary value problems.Appl. Math. Lett. 22 (2009), 1633-1638. Zbl 1181.34021, MR 2569054, 10.1016/j.aml.2009.05.009
Reference: [11] Krasnosel'skii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations.Pergamon Press New York (1964). MR 0159197
Reference: [12] Liu, L., Liu, B., Wu, Y.: Nontrivial solutions of $m$-point boundary value problems for singular second-order differential equations with a sign-changing nonlinear terms.J. Comput. Appl. Math. 224 (2009), 373-382. MR 2474239, 10.1016/j.cam.2008.05.007
Reference: [13] Ma, R.: Positive solutions for second-order three-point boundary value problems.Appl. Math. Lett. 14 (2001), 1-5. Zbl 0989.34009, MR 1758592, 10.1016/S0893-9659(00)00102-6
Reference: [14] Sun, W., Chen, S., Zhang, Q., Wang, C.: Existence of positive solutions to $n$-point nonhomogeneous boundary value problems.J. Math. Anal. Appl. 330 (2007), 612-621. MR 2302947, 10.1016/j.jmaa.2006.08.022
.

Files

Files Size Format View
MathBohem_136-2011-4_1.pdf 304.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo