Previous |  Up |  Next

Article

Title: Boundary value problem for differential inclusions in Fréchet spaces with multiple solutions of the homogeneous problem (English)
Author: Benedetti, Irene
Author: Malaguti, Luisa
Author: Taddei, Valentina
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 4
Year: 2011
Pages: 367-375
Summary lang: English
.
Category: math
.
Summary: The paper deals with the multivalued boundary value problem $x'\in A(t,x)x+F(t,x)$ for a.a.\ $t \in [a,b]$, $Mx(a)+Nx(b) =0$, in a separable, reflexive Banach space $E$. The nonlinearity $F$ is weakly upper semicontinuous in $x$. We prove the existence of global solutions in the Sobolev space $W^{1,p}([a,b], E)$ with $1<p<\infty $ endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneous linearized problem. An example completes the discussion. (English)
Keyword: multivalued boundary value problem
Keyword: differential inclusion in Banach space
Keyword: compact operator
Keyword: fixed point theorem
MSC: 34A60
MSC: 34B15
MSC: 34G25
idZBL: Zbl 1249.34171
idMR: MR2985546
DOI: 10.21136/MB.2011.141696
.
Date available: 2011-11-10T15:49:26Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141696
.
Reference: [1] Andres, J., Malaguti, L., Taddei, V.: On boundary value problems in Banach spaces.Dyn. Syst. Appl. 18 (2009), 275-301. Zbl 1195.34091, MR 2543232
Reference: [2] Basova, M. M., Obukhovski, V. V.: On some boundary value problems for functional-differential inclusions in Banach spaces.J. Math. Sci. 149 (2008), 1376-1384. MR 2336427, 10.1007/s10958-008-0071-7
Reference: [3] Benedetti, I., Malaguti, L., Taddei, V.: Semilinear differential inclusions via weak topologies.J. Math. Anal. Appl. 368 (2010), 90-102. Zbl 1198.34109, MR 2609261, 10.1016/j.jmaa.2010.03.002
Reference: [4] Benedetti, I., Malaguti, L., Taddei, V.: Two-point b.v.p. for multivalued equations with weakly regular r.h.s.Nonlinear Analysis, Theory Methods Appl. 74 (2011), 3657-3670. Zbl 1221.34161, MR 2803092
Reference: [5] Castaing, C., Valadier, V.: Convex Analysis and Measurable Multifunctions.Lect. Notes Math. 580, Springer, Berlin (1977). Zbl 0346.46038, MR 0467310, 10.1007/BFb0087688
Reference: [6] Daleckiĭ, Ju. L., Kreĭn, M. G.: Stability of Solutions of Differential Equations in Banach Spaces.Translation of Mathematical Monographs, American Mathematical Society, Providence, R. I. (1974). MR 0352639
Reference: [7] Edwards, R. E.: Functional Analysis: Theory and Applications.Holt Rinehart and Winston, New York (1965). Zbl 0182.16101, MR 0221256
Reference: [8] Kamenskii, M. I., Obukhovskii, V. V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space.W. de Gruyter, Berlin (2001). MR 1831201
Reference: [9] Marino, G.: Nonlinear boundary value problems for multivaued differential equations in Banach spaces.Nonlinear Anal., Theory Methods Appl. 14 (1990), 545-558. MR 1044285, 10.1016/0362-546X(90)90061-K
.

Files

Files Size Format View
MathBohem_136-2011-4_3.pdf 251.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo