Previous |  Up |  Next


bifurcation; topological configuration; orbital structure
In this paper we show that, for a given value of the energy, there is a bifurcation for the two imaginary centers problem. For this value not only the configuration of the orbits changes but also a change in the topology of the phase space occurs.
[1] Pars, L. A.: A Treatise on Analytical Dynamics. Heinemann, London (1965). Zbl 0125.12004
[2] Beletsky, U. V.: Essays on the Motion of Celestial Bodies. Birkhäuser (2001). MR 1851904 | Zbl 0974.70002
[3] Cordero, A., Alfaro, J. Martínez, Vindel, P.: Topology of the two fixed centres problem. Celestial Mechanics and Dynam. Astron. 82 (2002), 203-223. DOI 10.1023/A:1014545725377 | MR 1894248
[4] Campos, B., Alfaro, J. Martínez, Vindel, P.: Periodic orbit structure of the two fixed centres problem. Proc. of the Third International Workshop on Positional Astronomy and Celestial Mechanics. Ed. A. López et al. (1996).
Partner of
EuDML logo