Previous |  Up |  Next

Article

Title: Induced differential forms on manifolds of functions (English)
Author: Vizman, Cornelia
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 3
Year: 2011
Pages: 201-215
Summary lang: English
.
Category: math
.
Summary: Differential forms on the Fréchet manifold $\mathcal{F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal{F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal{F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6]. (English)
Keyword: manifold of functions
Keyword: fiber integral
Keyword: diffeomorphism group
MSC: 11K11
MSC: 22C22
idZBL: Zbl 1249.58005
idMR: MR2852381
.
Date available: 2011-11-11T08:52:13Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141707
.
Reference: [1] Alekseev, A., Strobl, T.: Current algebras and differential geometry.J. High Energy Phys. 03 (2005), 14. MR 2151966
Reference: [2] Bonelli, G., Zabzine, M.: From current algebras for $p$–branes to topological $M$–theory.J. High Energy Phys. 09 (2005), 15. MR 2171351, 10.1088/1126-6708/2005/09/015
Reference: [3] Brylinski, J.–L.: Loop spaces, characteristic classes and geometric quantization.vol. 107, Progr. Math., Birkhäuser, 1993. Zbl 0823.55002, MR 1197353
Reference: [4] Gay–Balmaz, F., Vizman, C.: Dual pairs in fluid dynamics.Ann. Global Anal. Geom. (2011). MR 2860394, 10.1007/s10455-011-9267-z
Reference: [5] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles.Pure and Applied Mathematics, vol. 47, Academic Press, New York–London, 1972. Zbl 0322.58001, MR 0336650
Reference: [6] Haller, S., Vizman, C.: Non-linear Grassmannians as coadjoint orbits.Math. Ann. 329 (2004), 771–785. MR 2076685, 10.1007/s00208-004-0536-z
Reference: [7] Hirsch, M. W.: Differential topology.vol. 33, Springer, 1976, Grad. Texts in Math. Zbl 0356.57001, MR 0448362
Reference: [8] Ismagilov, R. S.: Representations of infinite–dimensional groups.vol. 152, Ams. Math. Soc., 1996, Translations of Mathematical Monographs. Zbl 0856.22001, MR 1393939
Reference: [9] Ismagilov, R. S., Losik, M., Michor, P. W.: A 2–cocycle on a group of symplectomorphisms.Moscow Math. J. 6 (2006), 307–315. MR 2270616
Reference: [10] Kriegl, A., Michor, P. W.: The convenient setting of global analysis.vol. 53, Math. Surveys Monogr., 1997. Zbl 0889.58001, MR 1471480
Reference: [11] Marsden, J. E., Ratiu, T.: Introduction to Mechanics and Symmetry.2nd ed., Springer, 1999. Zbl 0933.70003, MR 1723696
Reference: [12] Marsden, J. E., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids.Phys. D 7 (1983), 305–323. Zbl 0576.58008, MR 0719058, 10.1016/0167-2789(83)90134-3
Reference: [13] Michor, P. W.: Manifolds of differentiable mappings.vol. 3, Shiva Math. Series, Shiva Publishing Ltd., Nantwich, 1980. Zbl 0433.58001, MR 0583436
Reference: [14] Roger, C.: Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations.Rep. Math. Phys. 35 (1995), 225–266. Zbl 0892.17018, MR 1377323, 10.1016/0034-4877(96)89288-3
Reference: [15] Vizman, C.: Lichnerowicz cocycles and central Lie group extensions.An. Univ. Vest Timis., Ser. Mat.–Inform. 48 (1–2) (2010), 285–297. Zbl 1224.58009, MR 2849342
.

Files

Files Size Format View
ArchMathRetro_047-2011-3_3.pdf 515.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo