Previous |  Up |  Next

Article

Title: Robustness optimal spring balance weighing designs for estimation total weight (English)
Author: Ceranka, Bronisław
Author: Graczyk, Małgorzata
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 6
Year: 2011
Pages: 902-908
Summary lang: English
.
Category: math
.
Summary: In this paper we develop the theory of spring balance weighing designs with non-positive correlated errors for that the lower bound of the variance of estimated total weight is attained. (English)
Keyword: robustness
Keyword: spring balance weighing design
Keyword: total weight
MSC: 62K05
MSC: 62K10
idZBL: Zbl 06047594
idMR: MR2907850
.
Date available: 2011-12-08T10:02:59Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141733
.
Reference: [1] Banerjee, K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker Inc., New York 1975. Zbl 0334.62030, MR 0458751
Reference: [2] Ceranka, B., Katulska, K.: Optimum singular spring balance weighing designs with non-homogeneity of the variances of errors for estimating the total weight.Austral. J. Statist. 28 (1986), 200–205. Zbl 0657.62082, MR 0860464, 10.1111/j.1467-842X.1986.tb00599.x
Reference: [3] Clatworthy, W. H.: Tables of two-associate-class partially balanced designs.NBS Appl. Math. 63 (1973). Zbl 0289.05017, MR 0415952
Reference: [4] Dey, A., Gupta, S. C.: Singular weighing designs and the estimation of total weight.Comm. Statist. Theory Methods 7 (1977), 289–295. MR 0436489
Reference: [5] Katulska, K.: On the estimation of total weight in singular spring balance weighing designs under the covariance matrix of errors $\sigma ^2{\bf G}$.Austral. J. Statist. 31 (1989), 277–286. Zbl 0707.62163, MR 1039415, 10.1111/j.1467-842X.1989.tb00397.x
Reference: [6] Krzyśko, M., Skorzybut, M.: Dysciminant analysis of multivariate repeated measures data with Kronecker product structured covariance matrices.Statist. Papers 50 (2009), 817–835. MR 2551353, 10.1007/s00362-009-0259-z
Reference: [7] Masaro, J., Wong, C. S.: Robustness of A-optimal designs.Linear Algebra Appl. 429 (2008), 1392–1408. Zbl 1145.62053, MR 2444331, 10.1016/j.laa.2008.02.017
Reference: [8] Pukelsheim, F.: Optimal Design of Experiment.John Wiley and Sons, New York 1993. MR 1211416
Reference: [9] Raghavarao, D.: Constructions and Combinatorial Problems in designs of Experiments.John Wiley Inc., New York 1971. MR 0365935
Reference: [10] Raghavarao, D., Padgett, L. V.: Block Designs, Analysis, Combinatorics and Applications.Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., 2005 Zbl 1102.62080, MR 2187913
Reference: [11] Sinha, B. K.: Optimum spring balance weighing designs.In: Proc. All India Convention on Quality and Reliability. Indian Inst. Tech., Kharagpur 1972.
Reference: [12] Shah, K. R., Sinha, B. K.: Theory of Optimal Designs.Springer-Verlag, Berlin 1989. Zbl 0688.62043, MR 1016151
.

Files

Files Size Format View
Kybernetika_47-2011-6_8.pdf 255.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo