Previous |  Up |  Next

Article

Title: Second order nonlinear differential equations with linear impulse and periodic boundary conditions (English)
Author: Huseynov, Aydin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 6
Year: 2011
Pages: 591-606
Summary lang: English
.
Category: math
.
Summary: In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis. (English)
Keyword: impulse conditions
Keyword: periodic boundary conditions
Keyword: Green's function
Keyword: fixed point theorems
MSC: 34B15
MSC: 34B27
MSC: 34B37
MSC: 34C25
MSC: 47N20
idZBL: Zbl 1249.34097
idMR: MR2886240
DOI: 10.1007/s10492-011-0035-y
.
Date available: 2011-12-16T15:09:35Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141769
.
Reference: [1] Atici, F. M., Guseinov, G. Sh.: On the existence of positive solutions for nonlinear differential equations with periodic coefficients.J. Comput. Appl. Math. 132 (2001), 341-356. MR 1840633, 10.1016/S0377-0427(00)00438-6
Reference: [2] Bainov, D. D., Simeonov, P. S.: Impulsive Differential Equations: Periodic Solutions and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1993). Zbl 0815.34001, MR 1266625
Reference: [3] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions.Hindawi Publishing Corporation New York (2006). Zbl 1130.34003, MR 2322133
Reference: [4] Chen, J., Tisdell, C. C., Yuan, R.: On the solvability of periodic boundary value problems with impulse.J. Math. Anal. Appl. 331 (2007), 902-912. Zbl 1123.34022, MR 2313690, 10.1016/j.jmaa.2006.09.021
Reference: [5] Dong, Y.: Periodic solutions for second order impulsive differential systems.Nonlinear Anal., Theory Methods Appl. 27 (1996), 811-820. Zbl 0858.34035, MR 1402168, 10.1016/0362-546X(95)00068-7
Reference: [6] Eloe, P. W., Henderson, J.: A boundary value problem for a system of ordinary differential equations with impulse effects.Rocky Mt. J. Math. 27 (1997), 785-799. Zbl 0902.34014, MR 1490275, 10.1216/rmjm/1181071893
Reference: [7] Franco, D., Nieto, J. J.: Maximum principles for periodic impulsive first order problems.J. Comput. Appl. Math. 88 (1998), 149-159. Zbl 0898.34010, MR 1609074, 10.1016/S0377-0427(97)00212-4
Reference: [8] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. MR 1100424
Reference: [9] George, R. K., Nandakumaran, A. K., Arapostathis, A.: A note on controllability of impulsive systems.J. Math. Anal. Appl. 241 (2000), 276-283. Zbl 0965.93015, MR 1739206, 10.1006/jmaa.1999.6632
Reference: [10] Guan, Z. H., Chen, G., Ueta, T.: On impulsive control of a periodically forced chaotic pendulum system.IEEE Trans. Autom. Control 45 (2000), 1724-1727. Zbl 0990.93105, MR 1791705, 10.1109/9.880633
Reference: [11] Hu, S., Lakshmikantham, V.: Periodic boundary value problems for second order impulsive differential systems.Nonlinear Anal., Theory Methods Appl. 13 (1989), 75-85. Zbl 0712.34033, MR 0973370, 10.1016/0362-546X(89)90036-9
Reference: [12] Huseynov, A.: On the sign of Green's function for an impulsive differential equation with periodic boundary conditions.Appl. Math. Comput. 208 (2009), 197-205. Zbl 1170.34018, MR 2490786, 10.1016/j.amc.2008.11.034
Reference: [13] Khristova, S. G., Bainov, D. D.: Existence of periodic solutions of nonlinear systems of differential equations with impulse effect.J. Math. Anal. Appl. 125 (1987), 192-202. Zbl 0636.34031, MR 0891359, 10.1016/0022-247X(87)90174-0
Reference: [14] Lakmeche, A., Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment.Dyn. Contin. Discrete Impuls. Syst. 7 (2000), 265-287. Zbl 1011.34031, MR 1744966
Reference: [15] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.World Scientific Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [16] Lakshmikantham, V., Murty, K. N., Sivasundaram, S.: Impulsive differential systems for two-point boundary value problems.Appl. Math. Comput. 50 (1992), 157-166. Zbl 0769.34022, MR 1172625, 10.1016/0096-3003(92)90123-I
Reference: [17] Lenci, S., Rega, G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation.Chaos Solitons Fractals 11 (2000), 2453-2472. Zbl 0964.70018, MR 1787844, 10.1016/S0960-0779(00)00030-8
Reference: [18] Li, J., Nieto, J. J., Shen, J.: Impulsive periodic boundary value problems of first-order differential equations.J. Math. Anal. Appl. 325 (2007), 226-236. Zbl 1110.34019, MR 2273040, 10.1016/j.jmaa.2005.04.005
Reference: [19] Liz, E., Nieto, J. J.: The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations.Commentat. Math. Univ. Carol. 34 (1993), 405-411. Zbl 0780.34006, MR 1243071
Reference: [20] Nenov, S.: Impulsive controllability and optimization problems in population dynamics.Nonlinear Anal., Theory Methods Appl. 36 (1999), 881-890. Zbl 0941.49021, MR 1682836, 10.1016/S0362-546X(97)00627-5
Reference: [21] Nieto, J. J.: Basic theory for nonresonance impulsive periodic problems of first order.J. Math. Anal. Appl. 205 (1997), 423-433. Zbl 0870.34009, MR 1428357, 10.1006/jmaa.1997.5207
Reference: [22] Nieto, J. J.: Impulsive resonance periodic problems of first order.Appl. Math. Lett. 15 (2002), 489-493. Zbl 1022.34025, MR 1902284, 10.1016/S0893-9659(01)00163-X
Reference: [23] Nieto, J. J.: Periodic boundary value problems for first-order impulsive ordinary differential equations.Nonlinear. Anal., Theory Methods Appl. 51 (2002), 1223-1232. Zbl 1015.34010, MR 1926625, 10.1016/S0362-546X(01)00889-6
Reference: [24] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Singapore (1995). Zbl 0837.34003, MR 1355787
Reference: [25] Tian, Y.: Solutions to boundary-value problems for second-order impulsive differential equations at resonance.Electron. J. Differ. Equ. 2008, No. 18 (2008), 1-9. Zbl 1139.34027, MR 2383382
Reference: [26] Vatsala, A. S., Sun, Y.: Periodic boundary value problems of impulsive differential equations.Appl. Anal. 44 (1992), 145-158. Zbl 0753.34008, MR 1284994, 10.1080/00036819208840074
.

Files

Files Size Format View
AplMat_56-2011-6_6.pdf 272.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo