Previous |  Up |  Next

Article

Title: On the existence of generalized quasi-Einstein manifolds (English)
Author: De, Uday Chand
Author: Mallick, Sahanous
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 279-291
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples. (English)
Keyword: quasi-Einstein manifolds
Keyword: generalized quasi-Einstein manifold
Keyword: manifold of generalized quasi-constant curvature
Keyword: manifold of quasi-constant curvature
MSC: 53C25
idZBL: Zbl 1249.53063
idMR: MR2876950
.
Date available: 2011-12-16T15:16:32Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141776
.
Reference: [1] Bejan, C., Binh, T. Q.: Generalized Einstein manifolds.WSPC–Proceeding Trim Size, dga 2007, 2007, pp. 47–54.
Reference: [2] Besse, A. L.: Einstein manifolds.Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer–Verlag, Berlin, Heidelberg, New York, 1987. Zbl 0613.53001, MR 0867684
Reference: [3] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds.Birkhauser, Boston, 2002. Zbl 1011.53001, MR 1874240
Reference: [4] Chaki, M. C.: On generalized quasi–Einstein manifolds.Publ. Math. Debrecen 58 (2001), 683–691. Zbl 1062.53035, MR 1828719
Reference: [5] Chaki, M. C.: On super quasi–Einstein manifolds.Publ. Math. Debrecen 64 (2004), 481–488. Zbl 1093.53045, MR 2059079
Reference: [6] Chaki, M. C., Maity, R. K.: On quasi–Einstein manifolds.Publ. Math. Debrecen 57 (2000), 297–306. Zbl 0968.53030, MR 1798715
Reference: [7] Chen, B. Y.: Geometry of submanifolds.Marcel Dekker. Inc., New York, 1973. Zbl 0262.53036, MR 0353212
Reference: [8] Chen, B. Y.: Geometry of submanifolds and its applications.Science University of Tokyo, 1981. Zbl 0474.53050, MR 0627323
Reference: [9] Chen, B. Y., Yano, K.: Hypersurfaces of a conformally flat space.Tensor N. S. 26 (1972), 318–322. Zbl 0257.53027, MR 0331283
Reference: [10] Das, Lovejoy: On generalized $p$–quasi–Einstein manifolds.preprint. Zbl 1159.53325
Reference: [11] De, U. C., Gazi, A. K.: On nearly quasi–Einstein manifolds.Novi Sad J. Math. 38 (2) (2008), 115–121. MR 2526034
Reference: [12] De, U. C., Ghosh, G. C.: On generalized quasi–Einstein manifolds.Kyungpook Math. J. 44 (2004), 607–615. Zbl 1076.53509, MR 2108466
Reference: [13] De, U. C., Ghosh, G. C.: On quasi–Einstein and special quasi–Einstein manifolds.Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5–7, 2004, 2004, pp. 178–191. MR 2143298
Reference: [14] Deszcz, R., Hotlos, M., Senturk, Z.: On curvature properties of quasi–Einstein hypersurfaces in semi–Euclidean spaces.Soochow J. Math. 27 (2001), 375–389. Zbl 1008.53020, MR 1867806
Reference: [15] Mocanu, A. L.: Les variétés à courbure quasi-constante de type Vranceanu (French).rench), Proceedings of the National Conference on Geometry and Topology (1986), Univ. Bucureşti, Bucharest, 1988, Manifolds with quasiconstant curvature of Vranceanu type, pp. 163–168. MR 0980015
Reference: [16] Muelemeester, W. De, Verstraelen, L.: Codimension 2 submanifolds with 2–quasi–umbilical normal direction.J. Korean Math. Soc. 15 (1979), 101–108.
Reference: [17] Patterson, E. M.: Some theorems on Ricci–recurrent spaces.J. London Math. Soc. 27 (1952), 2887–295. Zbl 0048.15604, MR 0048891
Reference: [18] Shaikh, A. A.: On pseudo quasi–Einstein manifolds.Periodica Mathematica Hungarica 59 (2) (2009), 119–146. Zbl 1224.53029, MR 2587857, 10.1007/s10998-009-0119-6
Reference: [19] Tamassay, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds.Tensor N. S. 53 (1993), 140–148. MR 1455411
Reference: [20] Vranceanu, Gh.: Lecons des Geometrie Differential.Ed. de L'Academie, vol. 4, Bucharest, 1968.
Reference: [21] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group.J. Differential Geom. 2 (1968), 161–184. Zbl 0167.19802, MR 0233314
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_5.pdf 456.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo