Previous |  Up |  Next

Article

Keywords:
Fedosov manifolds; Segal-Shale-Weil representation; Kostant’s spinors; elliptic complexes
Summary:
For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic connection is of Ricci type. In this paper, we prove that certain parts of these complexes are elliptic.
References:
[1] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Second edition. cond edition, Math. Surveys Monogr. 67 (2000), xviii+260 pp. MR 1721403
[2] Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151 (2) (1997), 334–383. DOI 10.1006/jfan.1997.3162 | MR 1491546 | Zbl 0904.58054
[3] Cahen, M., Schwachhöfer, L.: Special symplectic connections. J. Differential Geom. 83 (2) (2009), 229–271. MR 2577468 | Zbl 1190.53019
[4] Casselman, W.: Canonical extensions of Harish–Chandra modules to representations of $G$. Canad. J. Math. 41 (3) (1989), 385–438. DOI 10.4153/CJM-1989-019-5 | MR 1013462 | Zbl 0702.22016
[5] Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40 (2) (1994), 213–238. MR 1293654 | Zbl 0812.53034
[6] Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136 (1) (1998), 104–140. DOI 10.1006/aima.1998.1727 | MR 1623673 | Zbl 0945.53047
[7] Green, M. B., Hull, C. M.: Covariant quantum mechanics of the superstring. Phys. Lett. B 225 (1989), 57–65. DOI 10.1016/0370-2693(89)91009-5 | MR 1006387
[8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. DOI 10.1007/978-3-540-33421-7_4 | MR 2252919 | Zbl 1102.53032
[9] Hotta, R.: Elliptic complexes on certain homogeneous spaces. Osaka J. Math. 7 (1970), 117–160. MR 0265519 | Zbl 0197.47703
[10] Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (2) (1989), 539–570. DOI 10.1090/S0002-9947-1989-0986027-X | MR 0986027 | Zbl 0674.15021
[11] Kostant, B.: Symplectic Spinors. Symposia Mathematica, vol. XIV, Cambridge Univ. Press, 1974, pp. 139–152. MR 0400304 | Zbl 0321.58015
[12] Krýsl, S.: Howe duality for metaplectic group acting on symplectic spinor valued forms. accepted in J. Lie Theory.
[13] Krýsl, S.: Symplectic spinor forms and the invariant operators acting between them. Arch. Math. (Brno) 42 (Supplement) (2006), 279–290. MR 2322414
[14] Krýsl, S.: A complex of symplectic twistor operators in symplectic spin geometry. Monatsh. Math. 161 (4) (2010), 381–398. DOI 10.1007/s00605-009-0158-3 | MR 2734967
[15] Schmid, W.: Homogeneous complex manifolds and representations of semisimple Lie group. Representation theory and harmonic analysis on semisimple Lie groups. (Sally, P., Vogan, D., eds.), vol. 31, American Mathematical Society, Providence, Rhode-Island, Mathematical Surveys and Monographs, 1989. MR 1011899
[16] Shale, D.: Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103 (1962), 149–167. DOI 10.1090/S0002-9947-1962-0137504-6 | MR 0137504 | Zbl 0171.46901
[17] Stein, E., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. DOI 10.2307/2373431 | MR 0223492 | Zbl 0157.18303
[18] Tondeur, P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur. Comment. Math. Helv. 36 (1961), 234–244. DOI 10.1007/BF02566901 | MR 0138068
[19] Vaisman, I.: Symplectic Curvature Tensors. Monatshefte für Math., vol. 100, Springer-Verlag, Wien, 1985, pp. 299–327. MR 0814206
[20] Weil, A.: Sur certains groups d’opérateurs unitaires. Acta Math. 111 (1964), 143–211. DOI 10.1007/BF02391012 | MR 0165033
[21] Wells, R.: Differential analysis on complex manifolds. Grad. Texts in Math., vol. 65, Springer, New York, 2008. DOI 10.1007/978-0-387-73892-5 | MR 2359489 | Zbl 1131.32001
Partner of
EuDML logo