Title:
|
An observation on Krull and derived dimensions of some topological lattices (English) |
Author:
|
Rostami, M. |
Author:
|
Rodrigues, Ilda I. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
329-334 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(L, \le)$, be an algebraic lattice. It is well-known that $(L, \le)$ with its topological structure is topologically scattered if and only if $(L, \le)$ is ordered scattered with respect to its algebraic structure. In this note we prove that, if $L$ is a distributive algebraic lattice in which every element is the infimum of finitely many primes, then $L$ has Krull-dimension if and only if $L$ has derived dimension. We also prove the same result for $\operatorname{\it spec} L$, the set of all prime elements of $L$. Hence the dimensions on the lattice and on the spectrum coincide. (English) |
Keyword:
|
Krull dimension |
Keyword:
|
derived dimension |
Keyword:
|
inductive dimension |
Keyword:
|
scattered spaces and algebraic lattices |
MSC:
|
06-xx |
MSC:
|
06B30 |
MSC:
|
16U20 |
MSC:
|
54C25 |
MSC:
|
54G12 |
idZBL:
|
Zbl 1249.06010 |
idMR:
|
MR2876953 |
. |
Date available:
|
2011-12-16T15:21:08Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141779 |
. |
Reference:
|
[1] Birkhoff, G.: Lattice Theory.New York, Providence AMS, 1940. Zbl 0063.00402, MR 0001959 |
Reference:
|
[2] Erné, M., Gehrke, M., Pultr, A.: Complete congruences on topologies and down–set lattices.Appl. Categ. Structures 15 (2007), 163–184. Zbl 1122.06015, MR 2306544, 10.1007/s10485-006-9054-3 |
Reference:
|
[3] Gierz, G., Keimel, K.: Continuous ideal completeness and compactification.Lecture Notes in Math. 871 (1971), 97–124. 10.1007/BFb0089905 |
Reference:
|
[4] Gierz, G. et al.,: A Compendium of Continuous Lattices.Springer–Verlag, New York, 1980. Zbl 0452.06001, MR 0614752 |
Reference:
|
[5] Hausdorff, F.: Grundzüge einer Theorie der geordneten Mengen.Math. Ann. 65 (4) (1908), 435–505. MR 1511478, 10.1007/BF01451165 |
Reference:
|
[6] Johnstone, P.: Stone Spaces.Cambridge Stud. Adv. Math., 3, Cambridge University Press, 1986. Zbl 0586.54001, MR 0861951 |
Reference:
|
[7] Karamzadeh, O. A. S.: On the classical Krull dimension of rings.Fund. Math. 117 (2) (1983), 103–108. Zbl 0542.16022, MR 0719833 |
Reference:
|
[8] Mislove, M.: When are order scattered and topologically scattered the same?.Orders: Description and Roles (Pouzet, M., Richard, D., eds.), North–Holland Math. Stud., 1984, pp. 61–80. Zbl 0553.06007, MR 0779845 |
Reference:
|
[9] Mislove, M.: Order–scattered distributive continuous lattices are topologically scattered.Houston J. Math. 11 (4) (1985), 559–573. Zbl 0595.06011, MR 0837993 |
Reference:
|
[10] Mislove, M.: Topology, domain theory and theoretical computer sciences.Topology Appl. 89 (1–2) (1998), 3–59. MR 1641441, 10.1016/S0166-8641(97)00222-8 |
Reference:
|
[11] Năstăsescu, C., Van Oystaeyen, F.: Dimensions of ring theory.Mathematics and its Applications, 36, D. Reidel Publishing Company, Dordrecht, 1987. MR 0894033 |
Reference:
|
[12] Niefield, S. B., Rosenthal, K. I.: Spatial sublocales and essential primes.Topology Appl. 26 (3) (1987), 263–269. Zbl 0621.06007, MR 0904472, 10.1016/0166-8641(87)90046-0 |
Reference:
|
[13] Puczylowski, E. R.: Gabriel and Krull dimensions of modules over rings graded by finite groups.Proc. Amer. Math. Soc. 105 (4) (1985), 17–224. MR 0973835 |
Reference:
|
[14] Simmons, H.: The lattice theoretic part of topological separation axioms.Proc. Edinb. Math. Soc. 21 (1987), 41–48. MR 0493959, 10.1017/S0013091500015868 |
. |