Previous |  Up |  Next

Article

Title: An observation on Krull and derived dimensions of some topological lattices (English)
Author: Rostami, M.
Author: Rodrigues, Ilda I.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 329-334
Summary lang: English
.
Category: math
.
Summary: Let $(L, \le)$, be an algebraic lattice. It is well-known that $(L, \le)$ with its topological structure is topologically scattered if and only if $(L, \le)$ is ordered scattered with respect to its algebraic structure. In this note we prove that, if $L$ is a distributive algebraic lattice in which every element is the infimum of finitely many primes, then $L$ has Krull-dimension if and only if $L$ has derived dimension. We also prove the same result for $\operatorname{\it spec} L$, the set of all prime elements of $L$. Hence the dimensions on the lattice and on the spectrum coincide. (English)
Keyword: Krull dimension
Keyword: derived dimension
Keyword: inductive dimension
Keyword: scattered spaces and algebraic lattices
MSC: 06-xx
MSC: 06B30
MSC: 16U20
MSC: 54C25
MSC: 54G12
idZBL: Zbl 1249.06010
idMR: MR2876953
.
Date available: 2011-12-16T15:21:08Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141779
.
Reference: [1] Birkhoff, G.: Lattice Theory.New York, Providence AMS, 1940. Zbl 0063.00402, MR 0001959
Reference: [2] Erné, M., Gehrke, M., Pultr, A.: Complete congruences on topologies and down–set lattices.Appl. Categ. Structures 15 (2007), 163–184. Zbl 1122.06015, MR 2306544, 10.1007/s10485-006-9054-3
Reference: [3] Gierz, G., Keimel, K.: Continuous ideal completeness and compactification.Lecture Notes in Math. 871 (1971), 97–124. 10.1007/BFb0089905
Reference: [4] Gierz, G. et al.,: A Compendium of Continuous Lattices.Springer–Verlag, New York, 1980. Zbl 0452.06001, MR 0614752
Reference: [5] Hausdorff, F.: Grundzüge einer Theorie der geordneten Mengen.Math. Ann. 65 (4) (1908), 435–505. MR 1511478, 10.1007/BF01451165
Reference: [6] Johnstone, P.: Stone Spaces.Cambridge Stud. Adv. Math., 3, Cambridge University Press, 1986. Zbl 0586.54001, MR 0861951
Reference: [7] Karamzadeh, O. A. S.: On the classical Krull dimension of rings.Fund. Math. 117 (2) (1983), 103–108. Zbl 0542.16022, MR 0719833
Reference: [8] Mislove, M.: When are order scattered and topologically scattered the same?.Orders: Description and Roles (Pouzet, M., Richard, D., eds.), North–Holland Math. Stud., 1984, pp. 61–80. Zbl 0553.06007, MR 0779845
Reference: [9] Mislove, M.: Order–scattered distributive continuous lattices are topologically scattered.Houston J. Math. 11 (4) (1985), 559–573. Zbl 0595.06011, MR 0837993
Reference: [10] Mislove, M.: Topology, domain theory and theoretical computer sciences.Topology Appl. 89 (1–2) (1998), 3–59. MR 1641441, 10.1016/S0166-8641(97)00222-8
Reference: [11] Năstăsescu, C., Van Oystaeyen, F.: Dimensions of ring theory.Mathematics and its Applications, 36, D. Reidel Publishing Company, Dordrecht, 1987. MR 0894033
Reference: [12] Niefield, S. B., Rosenthal, K. I.: Spatial sublocales and essential primes.Topology Appl. 26 (3) (1987), 263–269. Zbl 0621.06007, MR 0904472, 10.1016/0166-8641(87)90046-0
Reference: [13] Puczylowski, E. R.: Gabriel and Krull dimensions of modules over rings graded by finite groups.Proc. Amer. Math. Soc. 105 (4) (1985), 17–224. MR 0973835
Reference: [14] Simmons, H.: The lattice theoretic part of topological separation axioms.Proc. Edinb. Math. Soc. 21 (1987), 41–48. MR 0493959, 10.1017/S0013091500015868
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_8.pdf 419.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo