Previous |  Up |  Next

Article

Title: Existence of solutions for a nonlinear discrete system involving the $p$-Laplacian (English)
Author: Zhang, Xingyong
Author: Tang, Xianhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 1
Year: 2012
Pages: 11-30
Summary lang: English
.
Category: math
.
Summary: The existence of solutions for boundary value problems for a nonlinear discrete system involving the $p$-Laplacian is investigated. The approach is based on critical point theory. (English)
Keyword: critical point theory
Keyword: boundary value problems
Keyword: discrete systems
Keyword: $p$-Laplacian
Keyword: variational method
MSC: 35B38
MSC: 35K92
MSC: 37J45
MSC: 39A10
MSC: 39A12
MSC: 58E50
MSC: 70H05
idZBL: Zbl 1249.39009
idMR: MR2891303
DOI: 10.1007/s10492-012-0002-2
.
Date available: 2012-01-09T19:23:07Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141816
.
Reference: [1] Bai, D., Xu, Y.: Nontrivial solutions of boundary value problems of second-order difference equations.J. Math. Anal. Appl. 326 (2007), 297-302. Zbl 1113.39018, MR 2277783, 10.1016/j.jmaa.2006.02.091
Reference: [2] Bonanno, G., Candito, P.: Nonlinear difference equations investigated via critical points methods.Nonlinear Anal., Theory Methods Appl. 70 (2009), 3180-3186. MR 2503063, 10.1016/j.na.2008.04.021
Reference: [3] Bonanno, G., Candito, P.: Infinitely many solutions for a class of discrete non-linear boundary value problems.Appl. Anal. 88 (2009), 605-616. Zbl 1176.39004, MR 2541143, 10.1080/00036810902942242
Reference: [4] Candito, P., Giovannelli, N.: Multiple solutions for a discrete boundary value problem involving the $p$-Laplacian.Comput. Math. Appl. 56 (2008), 959-964. Zbl 1155.39301, MR 2437868, 10.1016/j.camwa.2008.01.025
Reference: [5] Guo, Z. M., Yu, J. S.: Existence of periodic and subharmonic solutions for second-order superlinear difference equations.Sci. China Ser. A 46 (2003), 506-515. Zbl 1215.39001, MR 2014482, 10.1007/BF02884022
Reference: [6] Guo, Z. M., Yu, J. S.: The existence of periodic and subharmonic solutions to subquadratic second order difference equations.J. Lond. Math. Soc., II. Ser. 68 (2003), 419-430. MR 1994691, 10.1112/S0024610703004563
Reference: [7] Kuang, J.: Applied Inequalities.Shandong Science and Technology Press Jinan City (2004), Chinese. MR 1305610
Reference: [8] Lu, W. D.: Variational Methods in Differential Equations.Scientific Publishing House in China (2002).
Reference: [9] Ma, J., Tang, C. L.: Periodic solutions for some nonautonomous second order systems.J. Math. Anal. Appl. 275 (2002), 482-494. Zbl 1024.34036, MR 1943760, 10.1016/S0022-247X(02)00636-4
Reference: [10] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems.Springer-Verlag New York (1989). Zbl 0676.58017, MR 0982267
Reference: [11] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Application to Differential Equations. Reg. Conf. Ser. Math, 65.Am. Math. Soc. Provindence (1986). MR 0845785
Reference: [12] Tang, C.-L., Wu, X.-P.: Notes on periodic solutions of subquadratic second order systems.J. Math. Anal. Appl. 285 (2003), 8-16. Zbl 1054.34075, MR 2000135, 10.1016/S0022-247X(02)00417-1
Reference: [13] Wu, J. F., Wu, X. P.: Existence of nontrivial periodic solutions for a class of superquadratic second-order Hamiltonian systems.J. Southwest Univ. (Natural Science Edition) 30 (2008), 26-31. MR 2131492
Reference: [14] Wu, X.-P., Tang, C.-L.: Periodic solution of a class of non-autonomous second order systems.J. Math. Anal. Appl. 236 (1999), 227-235. MR 1704579, 10.1006/jmaa.1999.6408
Reference: [15] Xue, Y.-F., Tang, C.-L.: Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems.Appl. Math. Comput. 196 (2008), 494-500. Zbl 1153.39024, MR 2388705, 10.1016/j.amc.2007.06.015
Reference: [16] Xue, Y.-F., Tang, C.-L.: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2072-2080. Zbl 1129.39008, MR 2331858, 10.1016/j.na.2006.08.038
Reference: [17] Zhang, X., Tang, X.: Existence of nontrivial solutions for boundary value problems of second-order discrete systems.Math. Slovaca 61 (2011), 769-778. Zbl 1274.39018, MR 2827213, 10.2478/s12175-011-0044-z
Reference: [18] Zhao, F., Wu, X.: Periodic solutions for a class of nonautonomous second order systems.J. Math. Anal. Appl. 296 (2004), 422-434. Zbl 1050.34062, MR 2075174, 10.1016/j.jmaa.2004.01.041
Reference: [19] Zhou, Z., Yu, J.-S., Guo, Z.-M.: Periodic solutions of higher-dimensional discrete systems.Proc. R. Soc. Edinb., Sect. A, Math. 134 (2004), 1013-1022. Zbl 1073.39010, MR 2099576, 10.1017/S0308210500003607
.

Files

Files Size Format View
AplMat_57-2012-1_2.pdf 286.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo