Previous |  Up |  Next

Article

Title: Nonlocal systems of BVPs with asymptotically superlinear boundary conditions (English)
Author: Goodrich, Christopher S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 1
Year: 2012
Pages: 79-97
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a coupled system of second-order boundary value problems with nonlocal, nonlinear boundary conditions, and we examine conditions under which such problems will have at least one positive solution. By imposing only an asymptotic growth condition on the nonlinear boundary functions, we are able to achieve generalizations over existing works and, in particular, we allow for the nonlocal terms to be able to be realized as Lebesgue-Stieltjes integrals possessing signed Borel measures. We conclude with a numerical example to illustrate the use of one of our two main results. (English)
Keyword: coupled system of second-order boundary value problems
Keyword: nonlocal boundary condition
Keyword: nonlinear boundary condition
Keyword: superlinear growth
Keyword: positive solution
MSC: 34B10
MSC: 34B15
MSC: 34B18
MSC: 47H07
MSC: 47H10
idZBL: Zbl 1249.34054
idMR: MR2880912
.
Date available: 2012-02-07T10:25:37Z
Last updated: 2014-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/141827
.
Reference: [1] Agarwal R., Meehan M., O'Regan D.: Fixed Point Theory and Applications.Cambridge University Press, Cambridge, 2001. Zbl 1159.54001, MR 1825411
Reference: [2] Dunninger D., Wang H.: Existence and multiplicity of positive solutions for elliptic systems.Nonlinear Anal. 29 (1997), 1051–1060. Zbl 0885.35028, MR 1460438, 10.1016/S0362-546X(96)00092-2
Reference: [3] Goodrich C.S.: Positive solutions to boundary value problems with nonlinear boundary conditions.Nonlinear Anal. 75 (2012), 417–432. MR 2846811, 10.1016/j.na.2011.08.044
Reference: [4] Goodrich C.S.: On nonlocal BVPs with boundary conditions with asymptotically sublinear or superlinear growth.Math. Nachr.(to appear).
Reference: [5] Graef J., Webb J.R.L.: Third order boundary value problems with nonlocal boundary conditions.Nonlinear Anal. 71 (2009), 1542–1551. Zbl 1189.34034, MR 2524369, 10.1016/j.na.2008.12.047
Reference: [6] Infante G.: Nonlocal boundary value problems with two nonlinear boundary conditions.Commun. Appl. Anal. 12 (2008), 279–288. Zbl 1198.34025, MR 2499284
Reference: [7] Infante G., Pietramala P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations.Nonlinear Anal. 71 (2009), 1301–1310. Zbl 1169.45001, MR 2527550, 10.1016/j.na.2008.11.095
Reference: [8] Infante G., Pietramala P.: Eigenvalues and non-negative solutions of a system with nonlocal BCs.Nonlinear Stud. 16 (2009), 187–196. Zbl 1184.34027, MR 2527180
Reference: [9] Infante G., Pietramala P.: A third order boundary value problem subject to nonlinear boundary conditions.Math. Bohem. 135 (2010), 113–121. Zbl 1224.34036, MR 2723078
Reference: [10] Kang P., Wei Z.: Three positive solutions of singular nonlocal boundary value problems for systems of nonlinear second-order ordinary differential equations.Nonlinear Anal. 70 (2009), 444–451. Zbl 1169.34014, MR 2468250, 10.1016/j.na.2007.12.014
Reference: [11] Kelley W.G., Peterson A.C.: The Theory of Differential Equations: Classical and Qualitative.Prentice Hall, Upper Saddle River, 2004. Zbl 1201.34001, MR 2640364
Reference: [12] Webb J.R.L., Infante G.: Positive solutions of nonlocal boundary value problems: a unified approach.J. Lond. Math. Soc. (2) 74 (2006), 673–693. Zbl 1115.34028, MR 2286439, 10.1112/S0024610706023179
Reference: [13] Webb J.R.L.: Nonlocal conjugate type boundary value problems of higher order.Nonlinear Anal. 71 (2009), 1933–1940. Zbl 1181.34025, MR 2524407, 10.1016/j.na.2009.01.033
Reference: [14] Webb J.R.L.: Solutions of nonlinear equations in cones and positive linear operators.J. Lond. Math. Soc. (2) 82 (2010), 420–436. Zbl 1209.47017, MR 2725047, 10.1112/jlms/jdq037
Reference: [15] Webb J.R.L.: Remarks on a non-local boundary value problem.Nonlinear Anal. 72 (2010), 1075–1077. Zbl 1186.34029, MR 2579370, 10.1016/j.na.2009.07.047
Reference: [16] Yang Z.: Positive solutions to a system of second-order nonlocal boundary value problems.Nonlinear Anal. 62 (2005), 1251–1265. Zbl 1089.34022, MR 2154107, 10.1016/j.na.2005.04.030
Reference: [17] Yang Z.: Positive solutions of a second-order integral boundary value problem.J. Math. Anal. Appl. 321 (2006), 751–765. Zbl 1106.34014, MR 2241153, 10.1016/j.jmaa.2005.09.002
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-1_6.pdf 547.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo