Previous |  Up |  Next


copula; Fréchet class; Diophantine equation
This paper deals with conditions of compatibility of a system of copulas and with bounds of general Fréchet classes. Algebraic search for the bounds is interpreted as a solution to a linear system of Diophantine equations. Classical analytical specification of the bounds is described.
[1] F. Durante, E. P. Klement, J. J. Quesada-Molina: Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. ID 161537 (2008). MR 2481572 | Zbl 1162.62047
[2] P. Embrechts, F. Lindskog, A. McNeil: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.
[3] P. Embrechts: Copulas: A personal view. J. Risk Insurance 76 (2009), 3, 639-650. DOI 10.1111/j.1539-6975.2009.01310.x
[4] H. Joe: Multivariate models and Dependence Concepts. Chapman&Hall, London 1997. MR 1462613 | Zbl 0990.62517
[5] R. B. Nelsen: Introduction to Copulas. Springer-Verlag, New York 2006. MR 2197664 | Zbl 1152.62030
[6] C. Genest, J. Nešlehová: A primer on copulas for count data. Astin Bull. 37 (2007), 2, 475-515. DOI 10.2143/AST.37.2.2024077 | MR 2422797
[7] A. P. Tomás, M. Filgueiras: An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence - EPIA'97, Lecture Notes in Artificial Intelligence 1323 (E. Costa and A. Cardoso, eds.), Springer-Verlag 1997, pp. 73-84. MR 1703009
Partner of
EuDML logo