Previous |  Up |  Next

Article

Title: $\phi$-Laplacian BVPs with linear bounded operator conditions (English)
Author: Bachouche, Kamal
Author: Djebali, Smaïl
Author: Moussaoui, Toufik
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 2
Year: 2012
Pages: 121-137
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to present new existence results for $\phi$-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel'skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided. (English)
Keyword: $\phi$-Laplacian
Keyword: BVPs
Keyword: Krasnosel’skii’s fixed point theorem
Keyword: Schauder’s fixed point theorem
MSC: 34B10
MSC: 34B15
MSC: 34B18
idMR: MR2946212
DOI: 10.5817/AM2012-2-121
.
Date available: 2012-06-08T08:34:50Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142826
.
Reference: [1] Bachouche, K., Djebali, S., Moussaoui, T.: One-dimensional Dirichlet $\phi --$Laplacian BVPs with first order derivative dependence.Adv. Dynam. Syst. Appl. 6 (2) (2011), 159–175. MR 2911979
Reference: [2] Benmezai, A., Djebali, S., Moussaoui, T.: Multiple positive solutions for $\phi $–Laplacian BVPs.Panamer. Math. J. 17 (3) (2007), 53–73. MR 2335473
Reference: [3] Benmezai, A., Djebali, S., Moussaoui, T.: Positive solutions for $\phi $–Laplacian Dirichlet BVPs.Fixed Point Theory 8 (2) (2007), 167–186. Zbl 1156.34015, MR 2358986
Reference: [4] Benmezai, A., Djebali, S., Moussaoui, T.: Existence results for one-dimensional Dirichlet $\phi $–Laplacian BVPs: a fixed point approach.Dynam. Systems Appl. 17 (2008), 149–166. MR 2433897
Reference: [5] Deimling, K.: Nonlinear Functional Analysis.Springer–Verlag, Berlin, Heidelberg, 1985. Zbl 0559.47040, MR 0787404
Reference: [6] Feng, H., Ge, W., Jiang, M.: Multiple positive solutions for $m$–point boundary-value problems with one–dimensional $p$–Laplacian.Nonlinear Anal. 68 (8) (2008), 2269–2279. MR 2398649, 10.1016/j.na.2007.01.052
Reference: [7] Granas, A., Dugundji, J.: Fixed Point Theory.Springer-Verlag, New York, 2003. Zbl 1025.47002, MR 1987179
Reference: [8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Academic Press, San Diego, 1988. Zbl 0661.47045, MR 0959889
Reference: [9] Ji, D., Feng, M., Ge, W.: Multiple positive solutions for multipoint boundary value problems with sign changing nonlinearity.Appl. Math. Comput. 196 (2008), 511–520. Zbl 1138.34014, MR 2388707, 10.1016/j.amc.2007.06.028
Reference: [10] Karakostas, G. L.: Positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function.Electron. J. Differential Equations 68 (2004), 1–12. Zbl 1057.34010, MR 2057655
Reference: [11] Karakostas, G. L.: Triple positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function.Electron. J. Differential Equations 69 (2004), 1–12. Zbl 1057.34010, MR 2057656
Reference: [12] Karakostas, G. L.: Solvability of the $\phi $–Laplacian with nonlocal boundary conditions.Appl. Math. Comput. 215 (2009), 514–523. MR 2561508, 10.1016/j.amc.2009.05.022
Reference: [13] Krasnosel’skii, M. A.: Positive Solutions of Operator Equations.Noordhoff, Groningen, The Netherlands, 1964.
Reference: [14] Smart, D. R.: Fixed Point Theorems.cambridge tracts in mathematics ed., vol. 66, Cambridge University Press, London, 1974. Zbl 0297.47042, MR 0467717
Reference: [15] Wang, Y., Ge, W.: Existence of multiple positive solutions for multipoint boundary value problems with a one–dimensional $p$–Laplacian.Nonlinear Anal. 67 (2) (2007), 476–485. Zbl 1130.34009, MR 2317182, 10.1016/j.na.2006.06.011
Reference: [16] Wang, Y., Ge, W.: Existence of triple positive solutions for multi–point boundary value problems with a one dimensional $p$–Laplacian.Comput. Math. Appl. 54 (6) (2007), 793–807. Zbl 1134.34017, MR 2348264, 10.1016/j.camwa.2006.10.038
Reference: [17] Yan, B.: Multiple positive solutions for singular boundary–value problems with derivative dependence on finite and infinite intervals.Electron. J. Differential Equations 74 (2006), 1–25. Zbl 1117.34031, MR 2240822
Reference: [18] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems.Springer–Verlag, New York, 1986. MR 0816732
Reference: [19] Zhang, Z., Wang, J.: On existence and multiplicity of positive solutions to singular multi–point boundary value problems.J. Math. Anal. Appl. 295 (2004), 502–512. Zbl 1056.34018, MR 2072028, 10.1016/j.jmaa.2004.03.057
.

Files

Files Size Format View
ArchMathRetro_048-2012-2_5.pdf 548.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo