Previous |  Up |  Next

Article

Title: A characterization of harmonic sections and a Liouville theorem (English)
Author: Stelmastchuk, Simão
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 2
Year: 2012
Pages: 149-162
Summary lang: English
.
Category: math
.
Summary: Let $P(M,G)$ be a principal fiber bundle and $E(M,N,G,P)$ an associated fiber bundle. Our interest is to study the harmonic sections of the projection $\pi_{E}$ of $E$ into $M$. Our first purpose is give a characterization of harmonic sections of $M$ into $E$ regarding its equivariant lift. The second purpose is to show a version of a Liouville theorem for harmonic sections of $\pi_{E}$. (English)
Keyword: harmonic sections
Keyword: Liouville theorem
Keyword: stochastic analysis on manifolds
MSC: 53C43
MSC: 55R10
MSC: 58E20
MSC: 58J65
MSC: 60H30
idMR: MR2946214
DOI: 10.5817/AM2012-2-149
.
Date available: 2012-06-08T08:37:23Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142828
.
Reference: [1] Arvanitoyeorgos, A.: An introduction to Lie groups and the geometry of homogeneous spaces.Student Mathematical Library, vol. 22, AMS, Providence, RI, 2003. Zbl 1045.53001, MR 2011126
Reference: [2] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type.Differential Geom. Appl. 25 (3) (2007), 322–334. Zbl 1128.53037, MR 2330461, 10.1016/j.difgeo.2006.11.010
Reference: [3] Catuogno, P.: A geometric Itô formula.Workshop on Differential Geometry. Mat. Contemp., vol. 33, 2007, pp. 85–99. Zbl 1156.58013, MR 2429603
Reference: [4] Catuogno, P., Stelmastchuk, S.: Martingales on frame bundles.Potential Anal. 28 (2008), 61–69. Zbl 1131.53033, MR 2366399, 10.1007/s11118-007-9068-y
Reference: [5] Elworthy, K. D., Kendall, W. S.: Factorization of harmonic maps and Brownian motions.Pitman Res. Notes Math. Ser. 150 (1985), 72–83. MR 0894524
Reference: [6] Emery, M.: On two transfer principles in stochastic differential geometry.Séminaire de Probabilités XXIV, 407 – 441, Lectures Notes in Math., 1426, Springer, Berlin, 1989. MR 1071558
Reference: [7] Emery, M.: Stochastic Calculus in Manifolds.Springer, Berlin, 1989. Zbl 0697.60060, MR 1030543
Reference: [8] Emery, M.: Martingales continues dans les variétés différentiables.Lectures on probability theory and statistics (Saint-Flour, 1998), 1–84, Lecture Notes in Math., 1738, Springer, Berlin, 2000. Zbl 0969.60042, MR 1775639
Reference: [9] Hsu, E.: Stochastic analysis on manifolds.Grad. Stud. Math. 38 (2002). Zbl 0994.58019, MR 1882015
Reference: [10] Ishihara, S., Yano, K.: Tangent and cotangent bundles: Differential geometry.Pure Appl. Math. 16 (1973). Zbl 0262.53024, MR 0350650
Reference: [11] Ishihara, T.: Harmonic sections of tangent bundles.J. Math. Tokushima Univ. 13 (1979), 23–27. Zbl 0427.53019, MR 0563393
Reference: [12] J., Vilms: Totally geodesic maps.J. Differential Geom. 4 (1970), 73–79. Zbl 0194.52901, MR 0262984
Reference: [13] Kendall, W. S.: Nonnegative Ricci curvature and the Brownian coupling property.Stochastics 19 (1–2) (1986), 111–129. Zbl 0584.58045, MR 0864339, 10.1080/17442508608833419
Reference: [14] Kendall, W. S.: From stochastic parallel transport to harmonic maps.New directions in Dirichlet forms, Amer. Math. Soc., Stud. Adv. Math. 8 ed., 1998, pp. 49–115. Zbl 0924.58110, MR 1652279
Reference: [15] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. I, Interscience Publishers, New York, 1963. Zbl 0119.37502, MR 0152974
Reference: [16] Lindvall, T., Rogers, L. C. G.: Coupling of multidimensional diffusions by reflection.Ann. Probab. 14 (3) (1986), 860–872. Zbl 0593.60076, MR 0841588, 10.1214/aop/1176992442
Reference: [17] Meyer, P. A.: Géométrie stochastique sans larmes.Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., 850, Springer, Berlin–New York, 1981, pp. 44–102. Zbl 0459.60046, MR 0622555
Reference: [18] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundle.Ann. Mat. Pura Appl. (4) 150 (1988), 1–19. MR 0946027
Reference: [19] Poor, W. A.: Differential geometric structures.McGraw-Hill Book Co., New York, 1981. Zbl 0493.53027, MR 0647949
Reference: [20] Protter, P.: Stochastic integration and differential equations. A new approach.Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. Zbl 0694.60047, MR 1037262
Reference: [21] Shigekawa, I.: On stochastic horizontal lifts.Z. Wahrsch. Verw. Gebiete 59 (2) (1982), 211–221. Zbl 0487.60056, MR 0650613, 10.1007/BF00531745
Reference: [22] Wood, C. M.: Gauss section in Riemannian immersion.J. London Math. Soc. (2) 33 (1) (1986), 157–168. MR 0829396, 10.1112/jlms/s2-33.1.157
Reference: [23] Wood, C. M.: Harmonic sections and Yang – Mills fields.Proc. London Math. Soc. (3) 54 (3) (1987), 544–558. Zbl 0616.53028, MR 0879397
Reference: [24] Wood, C. M.: Harmonic sections and equivariant harmonic maps.Manuscripta Math. 94 (1) (1997), 1–13. Zbl 0914.58011, MR 1468930, 10.1007/BF02677834
Reference: [25] Wood, C. M.: Harmonic sections of homogeneous fibre bundles.Differential Geom. Appl. 19 (2) (2003), 193–210. Zbl 1058.53053, MR 2002659, 10.1016/S0926-2245(03)00021-4
.

Files

Files Size Format View
ArchMathRetro_048-2012-2_7.pdf 506.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo