Previous |  Up |  Next

Article

Title: Mathematical models of tumor growth systems (English)
Author: Suzuki, Takashi
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 201-218
Summary lang: English
.
Category: math
.
Summary: We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions. (English)
Keyword: tumor growth modeling
Keyword: mean field theory
Keyword: parabolic-ODE system
Keyword: global-in-time existence
Keyword: chemotaxis
MSC: 35K51
MSC: 35K57
MSC: 35Q92
MSC: 92C17
MSC: 92C50
idZBL: Zbl 1265.35159
idMR: MR2978266
DOI: 10.21136/MB.2012.142866
.
Date available: 2012-06-08T10:14:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142866
.
Reference: [1] Anderson, A. R. A., Chaplain, M. A. J.: Continuous and discrete mathematical models of tumor-induced angeogenesis.Bull. Math. Biol. 60 (1998), 857-899. 10.1006/bulm.1998.0042
Reference: [2] Anderson, A. R. A., Pitcairn, A. W.: Application of the hybrid discrete-continuum technique.Polymer and Cell Dynamics-Multiscale Modeling and Numerical Simulations, Birkhäuser, Basel, 2003, pp. 261-279.
Reference: [3] Anderson, A. R. A., Quaranta, V.: Integrative mathematical oncology.Cancer 8 (2008), 227-234.
Reference: [4] Anderson, A. R. A., Weaver, A. M., Cummings, R. T., Quaranta, V.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.Cell 127 (2006), 905-915. 10.1016/j.cell.2006.09.042
Reference: [5] Biler, P., Stańczy, R.: Mean field models for self-gravitating particles.Folia Matematica 13 (2006), 3-19. Zbl 1181.35290, MR 2675439
Reference: [6] Childress, S., Percus, J. K.: Nonlinear aspects of chemotaxis.Math. Biosci. 56 (1981), 217-237. Zbl 0481.92010, MR 0632161, 10.1016/0025-5564(81)90055-9
Reference: [7] Corrias, L., Perthame, B., Zaag, H.: A chemotaxis model motivated by angeogenesis.C.R. Acad. Sci. Paris, Ser. I 336 (2003), 141-146. MR 1969568, 10.1016/S1631-073X(02)00008-0
Reference: [8] Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions.Milan J. Math. 72 (2004), 1-28. MR 2099126, 10.1007/s00032-003-0026-x
Reference: [9] Fontelos, M. A., Friedman, A., Hu, B.: Mathematical analysis of a model for initiation of angiogeneis.SIAM J. Math. Anal. 33 (2002), 1330-1355. MR 1920634, 10.1137/S0036141001385046
Reference: [10] Friedman, A., Tello, J. I.: Stability of solutions of chemotaxis equations in reinforced random walks.J. Math. Anal. Appl. 272 (2002), 138-163. Zbl 1025.35005, MR 1930708, 10.1016/S0022-247X(02)00147-6
Reference: [11] Ichikawa, K., Rouzimaimaiti, M., Suzuki, T.: Reaction diffusion equation with non-local term arises as a mean field limit of the master equation.Discrete and Continuous Dynamical Systems S 5 (2012), 115-126 doi:10.3934/dcdss/2011.5. MR 2836554, 10.3934/dcdss/2011.5
Reference: [12] Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis.Trans. Amer. Math. Soc. 329 (1992), 819-824. Zbl 0746.35002, MR 1046835, 10.1090/S0002-9947-1992-1046835-6
Reference: [13] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, 10.1016/0022-5193(70)90092-5
Reference: [14] Kubo, A., Hoshino, H., Suzuki, T.: Asymptotic behavior of soltuions to a parabolic ODE system.Proceedings of the 5th East Asia PDE Conference H. J. Choe, C.-S. Lin, T. Suzuki, J. Wei Gakkotosho, Tokyo (2005), 121-136.
Reference: [15] Kubo, A., Saito, N., Suzuki, T., Hoshino, H.: Mathematical modelds of tumor angiogenesis and simulations.Kokyuroku RIMS 1499 (2006), 135-146. MR 2320335
Reference: [16] Kubo, A., Suzuki, T.: Asymptotic behavior of the solution to a parabolic ODE system modeling tumor growth.Differ. Integral Equ. 17 (2004), 721-736. MR 2074683
Reference: [17] Kubo, A., Suzuki, T.: Mathematical models of tumour angiogenesisi.J. Comp. Appl. Math. 204 (2007), 48-55. MR 2320335, 10.1016/j.cam.2006.04.027
Reference: [18] Levine, H. A., Sleeman, B. D.: A system of reaction and diffusion equations arising in the theory of reinforced random walks.SIAM J. Appl. Math. 57 (1997), 683-730. MR 1450846, 10.1137/S0036139995291106
Reference: [19] Lions, J. L.: Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires.Dunod-Gauthier-Villars, Paris (1969), French. MR 0259693
Reference: [20] Murray, J. D.: Mathematical Biology, I: An Introduction, third edition.Springer, New York (2001). MR 1908418
Reference: [21] Nanjundiah, V.: Chemotaxis, signal relaying, and aggregation morphology.J. Theor. Biol. 42 (1973), 63-105. 10.1016/0022-5193(73)90149-5
Reference: [22] Okubo, A.: Diffusion and Ecological Problems---Modern Perspectives, second edition.Springer, New York (2001). MR 1895041
Reference: [23] Othmer, H. G., Dumber, S. R., Alt, W.: Models of dispersal in biological systems.J. Math. Biol. 6 (1988), 263-298. MR 0949094, 10.1007/BF00277392
Reference: [24] Othmer, H. G., Stevens, A.: Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks.SIAM J. Appl. Math. 57 (1997), 1044-1081. Zbl 0990.35128, MR 1462051, 10.1137/S0036139995288976
Reference: [25] Rascle, M.: Sur une équation intégro-différentielle non linéaire issue de la biologie.J. Differ. Equations 32 (1979), 420-453. Zbl 0389.45013, MR 0535172, 10.1016/0022-0396(79)90043-3
Reference: [26] Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., Boissel, J. P.: A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents.J. Theor. Biol. 243 (2006), 532-541. MR 2306343, 10.1016/j.jtbi.2006.07.013
Reference: [27] Senba, T.: Blow-up of radially symmetric solutions to some systems of partial differential equations modelling chemotaxis.Adv. Math. Sci. Appl. 7 (1997), 79-92. Zbl 0877.35022, MR 1454659
Reference: [28] Sleeman, B. D., Levine, H. A.: Partial differential equations of chemotaxis and angiogenesis.Math. Meth. Appl. Sci. 24 (2001), 405-426. Zbl 0990.35014, MR 1821934, 10.1002/mma.212
Reference: [29] Suzuki, T.: Free Energy and Self-Interacting Particles.Birkhäuser, Boston (2005). Zbl 1082.35006, MR 2135150
Reference: [30] Suzuki, T.: Mean Field Theories and Dual Variation.Atlantis Press, Amsterdam (2008). Zbl 1247.35001, MR 2510744
Reference: [31] Suzuki, T., Takahashi, R.: Global in time solution to a class of tumour growth systems.Adv. Math. Sci. Appl. 19 (2009), 503-524. MR 2605731
Reference: [32] Yang, Y., Chen, H., Liu, W.: On existence and non-existence of global solutions to a system of reaction-diffusion equations modeling chemotaxis.SIAM J. Math. Anal. 33 (1997), 763-785. MR 1884721, 10.1137/S0036141000337796
.

Files

Files Size Format View
MathBohem_137-2012-2_10.pdf 286.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo